Emerging Semitransparent Solar Cells: Materials and Device Design

Semitransparent solar cells can provide not only efficient power‐generation but also appealing images and show promising applications in building integrated photovoltaics, wearable electronics, photovoltaic vehicles and so forth in the future. Such devices have been successfully realized by incorpor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-09, Vol.29 (34), p.n/a
Hauptverfasser: Tai, Qidong, Yan, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semitransparent solar cells can provide not only efficient power‐generation but also appealing images and show promising applications in building integrated photovoltaics, wearable electronics, photovoltaic vehicles and so forth in the future. Such devices have been successfully realized by incorporating transparent electrodes in new generation low‐cost solar cells, including organic solar cells (OSCs), dye‐sensitized solar cells (DSCs) and organometal halide perovskite solar cells (PSCs). In this review, the advances in the preparation of semitransparent OSCs, DSCs, and PSCs are summarized, focusing on the top transparent electrode materials and device designs, which are all crucial to the performance of these devices. Techniques for optimizing the efficiency, color and transparency of the devices are addressed in detail. Finally, a summary of the research field and an outlook into the future development in this area are provided. Recent developments of semitransparent organic solar cells, dye‐sensitized solar cells, and perovskite solar cells are reviewed with a focus on different device design, transparent top electrode materials, and the corresponding device fabrication techniques. Key issues related to the optimization of the efficiency, color, and transparency of the semitransparent photovoltaic devices are discussed in detail.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.201700192