Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process

The inherent structure tunability, good affinity with CO2, and nonvolatility of ionic liquids (ILs) drive their exploration and exploitation in CO2 separation field, and has attracted remarkable interest from both industries and academia. The aim of this Review is to give a detailed overview on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical reviews 2017-07, Vol.117 (14), p.9625-9673
Hauptverfasser: Zeng, Shaojuan, Zhang, Xiangping, Bai, Lu, Zhang, Xiaochun, Wang, Hui, Wang, Jianji, Bao, Di, Li, Mengdie, Liu, Xinyan, Zhang, Suojiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The inherent structure tunability, good affinity with CO2, and nonvolatility of ionic liquids (ILs) drive their exploration and exploitation in CO2 separation field, and has attracted remarkable interest from both industries and academia. The aim of this Review is to give a detailed overview on the recent advances on IL-based materials, including pure ILs, IL-based solvents, and IL-based membranes for CO2 capture and separation from the viewpoint of molecule to engineering. The effects of anions, cations and functional groups on CO2 solubility and selectivity of ILs, as well as the studies on degradability of ILs are reviewed, and the recent developments on functionalized ILs, IL-based solvents, and IL-based membranes are also discussed. CO2 separation mechanism with IL-based solvents and IL-based membranes are explained by combining molecular simulation and experimental characterization. Taking into consideration of the applications and industrialization, the recent achievements and developments on the transport properties of IL fluids and the process design of IL-based processes are highlighted. Finally, the future research challenges and perspectives of the commercialization of CO2 capture and separation with IL-based materials are posed.
ISSN:0009-2665
1520-6890
DOI:10.1021/acs.chemrev.7b00072