Methylcobalamin-Dependent Radical SAM C‑Methyltransferase Fom3 Recognizes Cytidylyl-2-hydroxyethylphosphonate and Catalyzes the Nonstereoselective C‑Methylation in Fosfomycin Biosynthesis
A methylcobalamin (MeCbl)-dependent radical S-adenosyl-l-methionine (SAM) methyltransferase Fom3 was found to catalyze the C-methylation of cytidylyl-2-hydroxyethylphosphonate (HEP-CMP) to give cytidylyl-2-hydroxypropylphosphonate (HPP-CMP), although it was originally proposed to catalyze the C-meth...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2017-07, Vol.56 (28), p.3519-3522 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A methylcobalamin (MeCbl)-dependent radical S-adenosyl-l-methionine (SAM) methyltransferase Fom3 was found to catalyze the C-methylation of cytidylyl-2-hydroxyethylphosphonate (HEP-CMP) to give cytidylyl-2-hydroxypropylphosphonate (HPP-CMP), although it was originally proposed to catalyze the C-methylation of 2-hydroxyethylphosphonate to give 2-hydroxypropylphosphonate in the biosynthesis of a unique C–P bond containing antibiotic fosfomycin in Streptomyces. Unexpectedly, the Fom3 reaction product from HEP-CMP was almost a 1:1 diastereomeric mixture of HPP-CMP, indicating that the C-methylation is not stereoselective. Presumably, only the CMP moiety of HEP-CMP is critical for substrate recognition; on the other hand, the enzyme does not fix the 2-hydroxy group of the substrate and either of the prochiral hydrogen atoms at the C2 position can be abstracted by the 5′-deoxyadenosyl radical generated from SAM to form the substrate radical intermediates, which react with MeCbl to afford the corresponding products. This strict substrate recognition mechanism with no stereoselectivity of a MeCbl-dependent radical SAM methyltransferase is remarkable in natural product biosynthetic chemistry, because such a hidden clue for selective substrate recognition is likely to be found in the other biosynthetic pathways. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/acs.biochem.7b00472 |