Serum levels of the bone turnover markers dickkopf-1, osteoprotegerin, and TNF-α in knee osteoarthritis patients

Knee osteoarthritis (KOA) is a common degenerative joint disease causing pain, stiffness, reduced motion, swelling, crepitus, and disability. Several inflammatory markers and cartilage degradation products can be used as biomarkers in OA. The key factors of bone metabolism in normal joint bone, dick...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical rheumatology 2017-10, Vol.36 (10), p.2351-2358
Hauptverfasser: Min, Sicong, Wang, Chao, Lu, Wanli, Xu, Zhihong, Shi, Dongquan, Chen, Dongyang, Teng, Huajian, Jiang, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Knee osteoarthritis (KOA) is a common degenerative joint disease causing pain, stiffness, reduced motion, swelling, crepitus, and disability. Several inflammatory markers and cartilage degradation products can be used as biomarkers in OA. The key factors of bone metabolism in normal joint bone, dickkopf-1 (DKK1) and osteoprotegerin (OPG), interact with Wnt signaling pathway, balancing between bone absorption and bone reconstruction. TNF-α is a key inducer of DKK-1, which belongs to the family of proteins involved in joint remodeling. The present study compared the serum levels of DKK1, TNF-α, and OPG in patients with KOA and healthy controls to analyze the interrelationship and the severity of joint destruction. One hundred forty-eight patients with KOA and 101 healthy controls were enrolled in this study. Anteroposterior knee radiographs determined the severity of the disease in the affected knee. The radiographic grading of KOA was performed by the Kellgren–Lawrence criteria. Serum levels of DKK-1, TNF-α, and OPG were estimated using the multiplex particle-based flow cytometry. Higher serum levels of OPG and TNF-α were observed in KOA than the controls; KOA patients showed a lower serum level of DKK-1, whereas the serum levels of DKK1 correlated with the progression of KOA. The serum levels of TNF-α, OPG, and DKK-1 correlated with incident KOA. In the ROC curve analysis, DKK1 levels showed 78.6% sensitivity and 40% specificity, TNF-α levels showed 74.1% sensitivity and 76.0% specificity, and OPG showed 88.1% sensitivity and 81% specificity in predicting severe KOA. In the univariate and multivariate analyses, TNF-α and OPG emerged as independent predictors of severe KOA. This study, for the first time, combined TNF-α, DKK1, and OPG as valuable biological markers in predicting the severity of KOA radiographically in the clinic. This study also supported the inflammation-induced DKK1 and OPG in OA pathogenesis.
ISSN:0770-3198
1434-9949
DOI:10.1007/s10067-017-3690-x