Implications of changing spatial dynamics of irrigated pasture, California's third largest agricultural water use
Irrigated agriculture is practiced on 680 million acres worldwide. Irrigated grazing land is likely a significant portion of that area but estimating an accurate figure has remained problematic. Due to its significant contribution to agricultural water use worldwide, we develop a methodology to remo...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2017-12, Vol.605-606, p.445-453 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Irrigated agriculture is practiced on 680 million acres worldwide. Irrigated grazing land is likely a significant portion of that area but estimating an accurate figure has remained problematic. Due to its significant contribution to agricultural water use worldwide, we develop a methodology to remotely sense irrigated pasture using a California case study. Irrigated pasture is the third largest agricultural water use in California, yet its economic returns are low. As pressures mount for the agricultural sector to be more water efficient and for water to be directed towards its most economically valuable uses, there will likely be a reduction in irrigated pasture acreage. A first step in understanding the importance of irrigated pasture in California is establishing a methodology to quantify baseline information about its area, location, and current rate of loss. This study used a novel object-based image analysis and supervised classification on publicly-available, high resolution, remote sensing National Agriculture Imaging Program (NAIP) imagery to develop a highly accurate map of irrigated pasture in a rural county in California's Sierra foothills. Irrigated pasture was found to have decreased by 19% during the ten-year period, 2005–2014, from 4,273 to 3,470 acres. The implications of this loss include potential impacts to wetland-dependent species, groundwater recharge, game species, traditional ranching culture, livestock production, and land conservation. Overall accuracy in classification across years was consistently over 89%. Comparing these results against available measurements of irrigated pasture provided by state and federal agencies reveals that this method significantly improves upon existing metrics and methods of data collection and points to critical needs for new targeted research and monitoring efforts. Broadly, the analysis presented here provides an improved methodology for mapping irrigated pasture that can be extended to provide accurate and spatially-explicit data for other counties in California and other arid and semi-arid regions worldwide.
[Display omitted]
•Irrigated pasture (IP) is being converted to other land uses across California.•The accuracy and precision of current land cover metrics that classify IP is poor.•A new methodology is developed that improves the process of classifying IP.•High-resolution imagery and object-based image analysis improves classification.•Continued loss of IP will likely have broad social an |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2017.06.065 |