Conformational Properties of a Back-Folding Wormlike Chain Confined in a Cylindrical Tube

When a semiflexible chain is confined in a narrow cylindrical tube, the formation of a polymer hairpin is a geometrical conformation that accompanies an exponentially large local free energy and, hence, is a relatively rare event. Numerical solutions of the hairpin distribution functions for persist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-06, Vol.118 (24), p.247802-247802, Article 247802
1. Verfasser: Chen, Jeff Z Y
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When a semiflexible chain is confined in a narrow cylindrical tube, the formation of a polymer hairpin is a geometrical conformation that accompanies an exponentially large local free energy and, hence, is a relatively rare event. Numerical solutions of the hairpin distribution functions for persistence-length-to-tube-radius ratios over a wide range are obtained in high precision, by using the Green's function approach for the wormlike-chain model. The crossover region between the narrow and moderately narrow tubes is critically investigated in terms of the hairpin free energy, global persistence length, mean hairpin-tip distance from the tube axis, and hairpin-plane orientational properties. Accurate representations of the solutions by simple interpolation formulae are suggested.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.118.247802