Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models

This study aimed to develop redox-sensitive and CD44-targeted liposomes to improve chemotherapy of osteosarcoma. Cationic liposomes were prepared and stabilized with a novel detachable polyethylene glycol (PEG2000) conjugated with cholesterol through a bio-reducible disulfide linker (Chol-SS-mPEG)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2017-09, Vol.261, p.113-125
Hauptverfasser: Chi, Yingying, Yin, Xuelei, Sun, Kaoxiang, Feng, Shuaishuai, Liu, Jinhu, Chen, Daquan, Guo, Chuanyou, Wu, Zimei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to develop redox-sensitive and CD44-targeted liposomes to improve chemotherapy of osteosarcoma. Cationic liposomes were prepared and stabilized with a novel detachable polyethylene glycol (PEG2000) conjugated with cholesterol through a bio-reducible disulfide linker (Chol-SS-mPEG). Hyaluronic acid (HA, MW 20–40kDa), a ligand to CD44, was non-covalently coated on the cationic liposomes. Doxorubicin (DOX) was actively loaded in the liposomes as a model drug. The roles of HA and Chol-SS-mPEG on intracellular drug delivery efficiency, and antitumor efficacy were studied. The structure of Chol-SS-mPEG was confirmed with Fourier-transform infrared and nuclear magnetic resonance (1H NMR). The liposomes, Chol-SS-mPEG/HA-L had a mean diameter of 165nm, zeta potential −28.9mV, and destabilized in reducing or acidic (pH5–6) conditions. In vitro release of DOX was well-controlled at physiological conditions, but a burst release of 60% was observed in the presence of 10mM glutathione (GSH), in contrast to non-redox sensitive liposomes (Chol-mPEG/HA-L and Chol-mPEG-L). MTT cell viability assay showed that the dual-functional Chol-SS-mPEG/HA-L with a drug loading of 15.0% (w/w) had significantly higher cytotoxicity to MG63 osteosarcoma cells compared with non-reduction sensitive or non-HA coated liposomes (p10-fold. In a MG63 xenograft mouse model, Chol-SS-mPEG/HA-L showed the most effective tumor suppression with minimal uptake by the liver compared with other liposomes. All animals treated with liposomal formulations survived, in contrast to those free-DOX treated. In conclusion, the easily prepared Chol-SS-mPEG/HA-L was demonstrated as an excellent CD44-mediated intracellular delivery system capable of long-circulation and GSH-triggered cytoplasmic drug release. Further translational and multidisciplinary research is required to make it real clinical benefits to cancer patients. [Display omitted]
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2017.06.027