Comparison of methods to evaluate bacterial contact-killing materials
[Display omitted] Cationic surfaces with alkylated quaternary-ammonium groups kill adhering bacteria upon contact by membrane disruption and are considered increasingly promising as a non-antibiotic based way to eradicate bacteria adhering to surfaces. However, reliable in vitro evaluation methods f...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2017-09, Vol.59, p.139-147 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Cationic surfaces with alkylated quaternary-ammonium groups kill adhering bacteria upon contact by membrane disruption and are considered increasingly promising as a non-antibiotic based way to eradicate bacteria adhering to surfaces. However, reliable in vitro evaluation methods for bacterial contact-killing surfaces do not yet exist. More importantly, results of different evaluation methods are often conflicting. Therefore, we compared five methods to evaluate contact-killing surfaces. To this end, we have copolymerized quaternary-ammonium groups into diurethane dimethacrylate/glycerol dimethacrylate (UDMA/GDMA) and determined contact-killing efficacies against five different Gram-positive and Gram-negative strains. Spray-coating bacteria from an aerosol onto contact-killing surfaces followed by air-drying as well as ASTM E2149-13a (American Society for Testing and Materials) were found unsuitable, while the Petrifilm® system and JIS Z 2801 (Japanese Industrial Standards) were found to be excellent methods to evaluate bacterial contact-killing surfaces. It is recommended however, that these methods be used in combination with a zone of inhibition on agar assay to exclude that leakage of antimicrobials from the material interferes with the contact-killing ability of the surface.
Bacterial adhesion to surfaces of biomaterials implants can be life-threatening. Antimicrobials to treat biomaterial-associated infections often fail due to the bacterial biofilm-mode-of-growth or are ineffective due to antibiotic-resistance of causative organisms. Positively-charged, quaternized surfaces can kill bacteria upon contact and are promising as a non-antibiotic-based treatment of biomaterial-associated infections. Reliable methods to determine efficacies of contact-killing surfaces are lacking, however. Here, we show that three out of five methods compared, including an established ASTM, are unsuitable. Methods found suitable should be used in combination with a zone-of-inhibition-assay to establish absence of antimicrobial leaching, potentially interfering with contact-killing. Identification of suitable assays for evaluating bacterial contact-killing will greatly assist this emerging field as an alternative for antibiotic-based treatment of biomaterial-associated-infections. |
---|---|
ISSN: | 1742-7061 1878-7568 |
DOI: | 10.1016/j.actbio.2017.06.042 |