Polymer brushes based on PLLA-b-PEO colloids for the preparation of protein resistant PLA surfaces

In this study we investigate the formation of protein-resistant polymer surfaces, such as aliphatic polyesters, through the deposition of self-assemblies of amphiphilic poly(l-lactide)-b-poly(ethylene oxide), PLLA-b-PEO, copolymers as stable nanoparticles with a kinetically frozen PLLA core on model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials science 2017-06, Vol.5 (6), p.1130-1143
Hauptverfasser: Mázl Chánová, E, Pop-Georgievski, O, Kumorek, M M, Janoušková, O, Machová, L, Kubies, D, Rypáček, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study we investigate the formation of protein-resistant polymer surfaces, such as aliphatic polyesters, through the deposition of self-assemblies of amphiphilic poly(l-lactide)-b-poly(ethylene oxide), PLLA-b-PEO, copolymers as stable nanoparticles with a kinetically frozen PLLA core on model PLLA surfaces. The length of the PEO chains in the corona was tuned to achieve polymer brushes capable of preventing protein adsorption on PLA-based biomaterials. The spectroscopic ellipsometry, IR and XPS analysis, contact angle goniometry, and AFM proved that the PEO chains adopted a brush structure and were preferably exposed on the surface. The low-fouling properties of the physisorbed PLLA-b-PEO layers approached the ones of reactive grafting methods, as shown by surface plasmon resonance spectroscopy. The anti-fouling properties of the prepared PEO brushes provided sufficient interface to prevent cell adhesion as proved in vitro. Thus, the developed surface coating with PLLA-b-PEO colloids can provide an anti-fouling background for the creation of nanopatterned biofunctionalized surfaces in biomedical applications.
ISSN:2047-4830
2047-4849
DOI:10.1039/c7bm00009j