Micro/extended-nano sampling interface from a living single cell
Single-cell analysis is of increasing importance in many fields, but is challenging due to the ultra-small volumes (picoliters) of single cells. Indeed, analysis of a specific analyte might require the analysis of a single molecule or several molecules. Analytical processes usually include sampling,...
Gespeichert in:
Veröffentlicht in: | Analyst (London) 2017-05, Vol.142 (10), p.1689-1696 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single-cell analysis is of increasing importance in many fields, but is challenging due to the ultra-small volumes (picoliters) of single cells. Indeed, analysis of a specific analyte might require the analysis of a single molecule or several molecules. Analytical processes usually include sampling, chemical processing, and detection. Although several papers have reported chemical processing and detection methods for single cells, a sampling method compatible with maintaining the viability of a single cell during sampling has yet to be developed. Here, we propose a femtoliter sampling method from a living single cell using micro/nanofluidic device technology. The sampling of 39 fL of cytoplasm from a single human aortic endothelial cell was demonstrated and its viability after sampling was confirmed. |
---|---|
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/c7an00220c |