Selective Fluorescence Detection of Cysteine over Homocysteine and Glutathione Based on a Cysteine-Triggered Dual Michael Addition/Retro-aza-aldol Cascade Reaction
In this work, a cysteine (Cys)-triggered dual Michael addition/retro-aza-aldol cascade reaction has been exploited and utilized to construct a fluorescent probe for Cys for the first time. The resulting fluorescent probe 8-alkynylBodipy 1 contains an activated alkynyl unit as Michael receptor and a...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2015-11, Vol.87 (22), p.11475-11483 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, a cysteine (Cys)-triggered dual Michael addition/retro-aza-aldol cascade reaction has been exploited and utilized to construct a fluorescent probe for Cys for the first time. The resulting fluorescent probe 8-alkynylBodipy 1 contains an activated alkynyl unit as Michael receptor and a Bodipy dye as fluorescence reporter and can highly selectively detect Cys over homocysteine (Hcy)/glutathione (GSH) as well as other amino acids with a significant fluorescence off–on response (∼4500-fold) and an ultralow detection limit (0.38 nM). The high selectivity of 1 for Cys could be attributed to a kinetically favored five-membered cyclic intermediate produced by the dual Michael addition of Cys with the activated alkynyl unit of 1. The big fluorescence off–on response is due to the subsequent retro-aza-aldol reaction of the five-membered cyclic intermediate that results in the release of a highly fluorescent 8-methylBodipy dye 2. The probe has been successfully used to detect and image Cys in serum and cells, respectively. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.5b03286 |