Melatonin protects against maternal obesity‐associated oxidative stress and meiotic defects in oocytes via the SIRT3‐SOD2‐dependent pathway

Maternal obesity in humans is associated with poor outcomes across the reproductive spectrum. Emerging evidence indicates that these defects are likely attributed to factors within the oocyte. Although various molecules and pathways may contribute to impaired oocyte quality, prevention of fertility...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pineal research 2017-10, Vol.63 (3), p.n/a
Hauptverfasser: Han, Longsen, Wang, Haichao, Li, Ling, Li, Xiaoyan, Ge, Juan, Reiter, Russel J., Wang, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maternal obesity in humans is associated with poor outcomes across the reproductive spectrum. Emerging evidence indicates that these defects are likely attributed to factors within the oocyte. Although various molecules and pathways may contribute to impaired oocyte quality, prevention of fertility issues associated with maternal obesity is a challenge. Using mice fed a high‐fat diet (HFD) as an obesity model, we document spindle disorganization, chromosome misalignment, and elevated reactive oxygen species (ROS) levels in oocytes from obese mice. Oral administration of melatonin to HFD mice not only reduces ROS generation, but also prevents spindle/chromosome anomalies in oocytes, consequently promoting the developmental potential of early embryos. Consistent with this finding, we find that melatonin supplement during in vitro maturation also markedly attenuates oxidative stress and meiotic defects in HFD oocytes. Finally, by performing morpholino knockdown and acetylation‐mimetic mutant overexpression assays, we reveal that melatonin ameliorates maternal obesity‐induced defective phenotypes in oocytes through the SIRT3‐SOD2‐dependent mechanism. In sum, our data uncover the marked beneficial effects of melatonin on oocyte quality from obese females; this opens a new area for optimizing culture system as well as fertility management.
ISSN:0742-3098
1600-079X
DOI:10.1111/jpi.12431