Severe Hyperhomocysteinemia Decreases Creatine Kinase Activity and Causes Memory Impairment: Neuroprotective Role of Creatine

In the present study, we investigate the effect of severe hyperhomocysteinemia on biochemical (creatine kinase activity), behavioral (memory tests), and histological assessments (hippocampal volume). A possible neuroprotective role of creatine on hyperhomocysteinemia effects was also evaluated. Seve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurotoxicity research 2017-11, Vol.32 (4), p.585-593
Hauptverfasser: Kolling, Janaína, Longoni, Aline, Siebert, Cassiana, dos Santos, Tiago Marcon, Marques, Eduardo Peil, Carletti, Jaqueline, Pereira, Lenir Orlandi, Wyse, Angela T. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, we investigate the effect of severe hyperhomocysteinemia on biochemical (creatine kinase activity), behavioral (memory tests), and histological assessments (hippocampal volume). A possible neuroprotective role of creatine on hyperhomocysteinemia effects was also evaluated. Severe hyperhomocysteinemia was induced in neonate rats (starting at 6 days of age) by treatment with homocysteine (0.3–0.6 μmol/g body weight) for 23 days. Creatine (50 mg/kg body weight) was administered concomitantly with homocysteine. Controls received saline in the same volumes. Twelve hours after the last injection, the rats were submitted to behavioral tests [(recognition task (NOR)] and inhibitory avoidance (IA)]. Following behavioral assessment, the animals were perfused and decapitated, the brain removed for subsequent morphological analysis of the hippocampus. Another group of animals was used to test creatine kinase activity in hippocampus. The results showed that rats treated with homocysteine decreased (44%) the exploration of the novel object in NOR. In the IA task, homocysteine-treated animals presented decreased latencies to step down the platform in short- (32%) and long-term (18%) testings (3 h and 7 days, respectively), evidencing aversive memory impairment. Hippocampal volume was not altered by homocysteine administration. Hyperhomocysteinemia decreased (45%) creatine kinase activity, and creatine was able to prevent such effect probably by creatine kinase/phosphocreatine/creatine homeostasis, which serves as energy circuit within of the cell. This finding may be associated, at least in part, with memory improvement, suggesting that creatine might represent an effective adjuvant to protect against the effects of high homocysteine plasma levels.
ISSN:1029-8428
1476-3524
DOI:10.1007/s12640-017-9767-0