A zinc oxide‐modified hydroxyapatite‐based cement facilitated new crystalline‐stoichiometric and amorphous apatite precipitation on dentine

Aim To evaluate the remineralization ability of two endodontic sealer cements. Methodology Mid‐coronal dentine surfaces were subjected to: (i) 37% phosphoric acid (PA) or (ii) 0.5 mol L−1 ethylenediaminetetraacetic acid (EDTA) conditioning prior to the application of two experimental hydroxyapatite‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International endodontic journal 2017-12, Vol.50 (S2), p.e109-e119
Hauptverfasser: Toledano, M., Pérez‐Álvarez, M. C., Aguilera, F. S., Osorio, E., Cabello, I., Toledano‐Osorio, M., Osorio, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e119
container_issue S2
container_start_page e109
container_title International endodontic journal
container_volume 50
creator Toledano, M.
Pérez‐Álvarez, M. C.
Aguilera, F. S.
Osorio, E.
Cabello, I.
Toledano‐Osorio, M.
Osorio, R.
description Aim To evaluate the remineralization ability of two endodontic sealer cements. Methodology Mid‐coronal dentine surfaces were subjected to: (i) 37% phosphoric acid (PA) or (ii) 0.5 mol L−1 ethylenediaminetetraacetic acid (EDTA) conditioning prior to the application of two experimental hydroxyapatite‐based cements, containing sodium hydroxide (calcypatite) or zinc oxide oxiapatite respectively. Samples were stored in simulated body fluid for 24 h or 21 days. Remineralization of the dentine surfaces were studied by Raman spectroscopy (mapping with K‐means cluster and hierarchical cluster analysis) was undertaken. Nanoroughness and collagen fibril width measurements were performed with an atomic force microscopy. ANOVA and Student–Newman–Keuls test were performed (α=0.05). Results Phosphoric acid+oxiapatite promoted both the highest dentine mineralization (P 
doi_str_mv 10.1111/iej.12807
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1914291814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914291814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3887-61068b31a750bae5b6710124df562ce1be17033f40da688cbea140132c2a30d83</originalsourceid><addsrcrecordid>eNp1kcGKFDEQhoMo7jh68AUk4EUPvZtKOunMcVlWXVnwoucmnVQzGbo7bZJht_fkI-gr-iRmnNGDYAgEqr58FPUT8hLYOZRz4XF3Dlyz5hFZgVCy4nIDj8mKQS0qrrU8I89S2jHGJBPwlJxxraRopFqRH5f0wU-Whnvv8Oe372Nwvvfo6HZxMdwvZjbZ50OnM6mULY44Zdob6wefTS6lCe-ojUvKZhj8dEBTDt5ufRgxR2-pmRw1Y4jzNuwTPRnpHNH6-eDwYaLluiIu_5-TJ70ZEr44vWvy5d3156sP1e2n9zdXl7eVFVo3lQKmdCfANJJ1BmWnGmDAa9dLxS1Ch9AwIfqaOaO0th0aqBkIbrkRzGmxJm-O3jmGr3tMuR19sjgMZsIyZwsbqPkGdNnhmrz-B92FfZzKdIVSqtFlxaxQb4-UjSGliH07Rz-auLTA2kNObcmp_Z1TYV-djPtuRPeX_BNMAS6OwJ0fcPm_qb25_nhU_gLgn6IL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966788850</pqid></control><display><type>article</type><title>A zinc oxide‐modified hydroxyapatite‐based cement facilitated new crystalline‐stoichiometric and amorphous apatite precipitation on dentine</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Toledano, M. ; Pérez‐Álvarez, M. C. ; Aguilera, F. S. ; Osorio, E. ; Cabello, I. ; Toledano‐Osorio, M. ; Osorio, R.</creator><creatorcontrib>Toledano, M. ; Pérez‐Álvarez, M. C. ; Aguilera, F. S. ; Osorio, E. ; Cabello, I. ; Toledano‐Osorio, M. ; Osorio, R.</creatorcontrib><description>Aim To evaluate the remineralization ability of two endodontic sealer cements. Methodology Mid‐coronal dentine surfaces were subjected to: (i) 37% phosphoric acid (PA) or (ii) 0.5 mol L−1 ethylenediaminetetraacetic acid (EDTA) conditioning prior to the application of two experimental hydroxyapatite‐based cements, containing sodium hydroxide (calcypatite) or zinc oxide oxiapatite respectively. Samples were stored in simulated body fluid for 24 h or 21 days. Remineralization of the dentine surfaces were studied by Raman spectroscopy (mapping with K‐means cluster and hierarchical cluster analysis) was undertaken. Nanoroughness and collagen fibril width measurements were performed with an atomic force microscopy. ANOVA and Student–Newman–Keuls test were performed (α=0.05). Results Phosphoric acid+oxiapatite promoted both the highest dentine mineralization (P &lt; 0.05) and crystallographic maturity at the dentine surface. Noncrystalline amorphous‐like apatites were also formed. Dentine treated with PA+calcypatite attained the roughest surface (P &lt; 0.05) with minimal fibril width (P &lt; 0.05). Cross‐linking of collagen only became greater in the group PA+oxiapatite after 21 days. The maximum relative mineral concentration and structure of collagen linked to the amide I and ratio amide III/AGEs was obtained after using PA+calcypatite at 21‐days time‐point (P &lt; 0.05). EDTA produced a lower stoichiometric hydroxyapatite (P &lt; 0.05) with decreased maturity, at the expense of carbonate band widening, although it favoured the nucleation of carbonated calcium phosphate. Conclusions Dentine surfaces treated with PA+oxiapatite attained the highest dentine remineralization with both crystalline‐stoichiometric and amorphous apatites, at 21 days. EDTA conditioning facilitated amorphous‐bulk mineral precipitation. The amorphization was more intense after using oxiapatite and provided an ion‐rich environment favouring in situ dentine remineralization.</description><identifier>ISSN: 0143-2885</identifier><identifier>EISSN: 1365-2591</identifier><identifier>DOI: 10.1111/iej.12807</identifier><identifier>PMID: 28653756</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Acetic acid ; Apatite ; Atomic force microscopy ; Calcium phosphates ; Chemical precipitation ; Cluster analysis ; Collagen ; Cross-linking ; crystallinity ; Dental Cements - chemistry ; Dentin - chemistry ; dentine ; Dentistry ; Edetic acid ; Endodontics ; Hydroxyapatite ; Hydroxyapatites - chemistry ; Materials Testing ; Mineralization ; Phosphoric acid ; Phosphoric Acids ; Raman ; Raman spectroscopy ; Remineralization ; Sodium ; Sodium hydroxide ; Spectroscopy ; Spectrum Analysis, Raman ; Surface Properties ; Tooth Remineralization ; zinc ; Zinc oxide ; Zinc Oxide - chemistry ; Zinc oxides</subject><ispartof>International endodontic journal, 2017-12, Vol.50 (S2), p.e109-e119</ispartof><rights>2017 International Endodontic Journal. Published by John Wiley &amp; Sons Ltd</rights><rights>2017 International Endodontic Journal. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2017 International Endodontic Journal. Published by John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3887-61068b31a750bae5b6710124df562ce1be17033f40da688cbea140132c2a30d83</citedby><cites>FETCH-LOGICAL-c3887-61068b31a750bae5b6710124df562ce1be17033f40da688cbea140132c2a30d83</cites><orcidid>0000-0002-2172-7896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fiej.12807$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fiej.12807$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28653756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toledano, M.</creatorcontrib><creatorcontrib>Pérez‐Álvarez, M. C.</creatorcontrib><creatorcontrib>Aguilera, F. S.</creatorcontrib><creatorcontrib>Osorio, E.</creatorcontrib><creatorcontrib>Cabello, I.</creatorcontrib><creatorcontrib>Toledano‐Osorio, M.</creatorcontrib><creatorcontrib>Osorio, R.</creatorcontrib><title>A zinc oxide‐modified hydroxyapatite‐based cement facilitated new crystalline‐stoichiometric and amorphous apatite precipitation on dentine</title><title>International endodontic journal</title><addtitle>Int Endod J</addtitle><description>Aim To evaluate the remineralization ability of two endodontic sealer cements. Methodology Mid‐coronal dentine surfaces were subjected to: (i) 37% phosphoric acid (PA) or (ii) 0.5 mol L−1 ethylenediaminetetraacetic acid (EDTA) conditioning prior to the application of two experimental hydroxyapatite‐based cements, containing sodium hydroxide (calcypatite) or zinc oxide oxiapatite respectively. Samples were stored in simulated body fluid for 24 h or 21 days. Remineralization of the dentine surfaces were studied by Raman spectroscopy (mapping with K‐means cluster and hierarchical cluster analysis) was undertaken. Nanoroughness and collagen fibril width measurements were performed with an atomic force microscopy. ANOVA and Student–Newman–Keuls test were performed (α=0.05). Results Phosphoric acid+oxiapatite promoted both the highest dentine mineralization (P &lt; 0.05) and crystallographic maturity at the dentine surface. Noncrystalline amorphous‐like apatites were also formed. Dentine treated with PA+calcypatite attained the roughest surface (P &lt; 0.05) with minimal fibril width (P &lt; 0.05). Cross‐linking of collagen only became greater in the group PA+oxiapatite after 21 days. The maximum relative mineral concentration and structure of collagen linked to the amide I and ratio amide III/AGEs was obtained after using PA+calcypatite at 21‐days time‐point (P &lt; 0.05). EDTA produced a lower stoichiometric hydroxyapatite (P &lt; 0.05) with decreased maturity, at the expense of carbonate band widening, although it favoured the nucleation of carbonated calcium phosphate. Conclusions Dentine surfaces treated with PA+oxiapatite attained the highest dentine remineralization with both crystalline‐stoichiometric and amorphous apatites, at 21 days. EDTA conditioning facilitated amorphous‐bulk mineral precipitation. The amorphization was more intense after using oxiapatite and provided an ion‐rich environment favouring in situ dentine remineralization.</description><subject>Acetic acid</subject><subject>Apatite</subject><subject>Atomic force microscopy</subject><subject>Calcium phosphates</subject><subject>Chemical precipitation</subject><subject>Cluster analysis</subject><subject>Collagen</subject><subject>Cross-linking</subject><subject>crystallinity</subject><subject>Dental Cements - chemistry</subject><subject>Dentin - chemistry</subject><subject>dentine</subject><subject>Dentistry</subject><subject>Edetic acid</subject><subject>Endodontics</subject><subject>Hydroxyapatite</subject><subject>Hydroxyapatites - chemistry</subject><subject>Materials Testing</subject><subject>Mineralization</subject><subject>Phosphoric acid</subject><subject>Phosphoric Acids</subject><subject>Raman</subject><subject>Raman spectroscopy</subject><subject>Remineralization</subject><subject>Sodium</subject><subject>Sodium hydroxide</subject><subject>Spectroscopy</subject><subject>Spectrum Analysis, Raman</subject><subject>Surface Properties</subject><subject>Tooth Remineralization</subject><subject>zinc</subject><subject>Zinc oxide</subject><subject>Zinc Oxide - chemistry</subject><subject>Zinc oxides</subject><issn>0143-2885</issn><issn>1365-2591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcGKFDEQhoMo7jh68AUk4EUPvZtKOunMcVlWXVnwoucmnVQzGbo7bZJht_fkI-gr-iRmnNGDYAgEqr58FPUT8hLYOZRz4XF3Dlyz5hFZgVCy4nIDj8mKQS0qrrU8I89S2jHGJBPwlJxxraRopFqRH5f0wU-Whnvv8Oe372Nwvvfo6HZxMdwvZjbZ50OnM6mULY44Zdob6wefTS6lCe-ojUvKZhj8dEBTDt5ufRgxR2-pmRw1Y4jzNuwTPRnpHNH6-eDwYaLluiIu_5-TJ70ZEr44vWvy5d3156sP1e2n9zdXl7eVFVo3lQKmdCfANJJ1BmWnGmDAa9dLxS1Ch9AwIfqaOaO0th0aqBkIbrkRzGmxJm-O3jmGr3tMuR19sjgMZsIyZwsbqPkGdNnhmrz-B92FfZzKdIVSqtFlxaxQb4-UjSGliH07Rz-auLTA2kNObcmp_Z1TYV-djPtuRPeX_BNMAS6OwJ0fcPm_qb25_nhU_gLgn6IL</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Toledano, M.</creator><creator>Pérez‐Álvarez, M. C.</creator><creator>Aguilera, F. S.</creator><creator>Osorio, E.</creator><creator>Cabello, I.</creator><creator>Toledano‐Osorio, M.</creator><creator>Osorio, R.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2172-7896</orcidid></search><sort><creationdate>201712</creationdate><title>A zinc oxide‐modified hydroxyapatite‐based cement facilitated new crystalline‐stoichiometric and amorphous apatite precipitation on dentine</title><author>Toledano, M. ; Pérez‐Álvarez, M. C. ; Aguilera, F. S. ; Osorio, E. ; Cabello, I. ; Toledano‐Osorio, M. ; Osorio, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3887-61068b31a750bae5b6710124df562ce1be17033f40da688cbea140132c2a30d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetic acid</topic><topic>Apatite</topic><topic>Atomic force microscopy</topic><topic>Calcium phosphates</topic><topic>Chemical precipitation</topic><topic>Cluster analysis</topic><topic>Collagen</topic><topic>Cross-linking</topic><topic>crystallinity</topic><topic>Dental Cements - chemistry</topic><topic>Dentin - chemistry</topic><topic>dentine</topic><topic>Dentistry</topic><topic>Edetic acid</topic><topic>Endodontics</topic><topic>Hydroxyapatite</topic><topic>Hydroxyapatites - chemistry</topic><topic>Materials Testing</topic><topic>Mineralization</topic><topic>Phosphoric acid</topic><topic>Phosphoric Acids</topic><topic>Raman</topic><topic>Raman spectroscopy</topic><topic>Remineralization</topic><topic>Sodium</topic><topic>Sodium hydroxide</topic><topic>Spectroscopy</topic><topic>Spectrum Analysis, Raman</topic><topic>Surface Properties</topic><topic>Tooth Remineralization</topic><topic>zinc</topic><topic>Zinc oxide</topic><topic>Zinc Oxide - chemistry</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toledano, M.</creatorcontrib><creatorcontrib>Pérez‐Álvarez, M. C.</creatorcontrib><creatorcontrib>Aguilera, F. S.</creatorcontrib><creatorcontrib>Osorio, E.</creatorcontrib><creatorcontrib>Cabello, I.</creatorcontrib><creatorcontrib>Toledano‐Osorio, M.</creatorcontrib><creatorcontrib>Osorio, R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>International endodontic journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toledano, M.</au><au>Pérez‐Álvarez, M. C.</au><au>Aguilera, F. S.</au><au>Osorio, E.</au><au>Cabello, I.</au><au>Toledano‐Osorio, M.</au><au>Osorio, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A zinc oxide‐modified hydroxyapatite‐based cement facilitated new crystalline‐stoichiometric and amorphous apatite precipitation on dentine</atitle><jtitle>International endodontic journal</jtitle><addtitle>Int Endod J</addtitle><date>2017-12</date><risdate>2017</risdate><volume>50</volume><issue>S2</issue><spage>e109</spage><epage>e119</epage><pages>e109-e119</pages><issn>0143-2885</issn><eissn>1365-2591</eissn><abstract>Aim To evaluate the remineralization ability of two endodontic sealer cements. Methodology Mid‐coronal dentine surfaces were subjected to: (i) 37% phosphoric acid (PA) or (ii) 0.5 mol L−1 ethylenediaminetetraacetic acid (EDTA) conditioning prior to the application of two experimental hydroxyapatite‐based cements, containing sodium hydroxide (calcypatite) or zinc oxide oxiapatite respectively. Samples were stored in simulated body fluid for 24 h or 21 days. Remineralization of the dentine surfaces were studied by Raman spectroscopy (mapping with K‐means cluster and hierarchical cluster analysis) was undertaken. Nanoroughness and collagen fibril width measurements were performed with an atomic force microscopy. ANOVA and Student–Newman–Keuls test were performed (α=0.05). Results Phosphoric acid+oxiapatite promoted both the highest dentine mineralization (P &lt; 0.05) and crystallographic maturity at the dentine surface. Noncrystalline amorphous‐like apatites were also formed. Dentine treated with PA+calcypatite attained the roughest surface (P &lt; 0.05) with minimal fibril width (P &lt; 0.05). Cross‐linking of collagen only became greater in the group PA+oxiapatite after 21 days. The maximum relative mineral concentration and structure of collagen linked to the amide I and ratio amide III/AGEs was obtained after using PA+calcypatite at 21‐days time‐point (P &lt; 0.05). EDTA produced a lower stoichiometric hydroxyapatite (P &lt; 0.05) with decreased maturity, at the expense of carbonate band widening, although it favoured the nucleation of carbonated calcium phosphate. Conclusions Dentine surfaces treated with PA+oxiapatite attained the highest dentine remineralization with both crystalline‐stoichiometric and amorphous apatites, at 21 days. EDTA conditioning facilitated amorphous‐bulk mineral precipitation. The amorphization was more intense after using oxiapatite and provided an ion‐rich environment favouring in situ dentine remineralization.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28653756</pmid><doi>10.1111/iej.12807</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2172-7896</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-2885
ispartof International endodontic journal, 2017-12, Vol.50 (S2), p.e109-e119
issn 0143-2885
1365-2591
language eng
recordid cdi_proquest_miscellaneous_1914291814
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acetic acid
Apatite
Atomic force microscopy
Calcium phosphates
Chemical precipitation
Cluster analysis
Collagen
Cross-linking
crystallinity
Dental Cements - chemistry
Dentin - chemistry
dentine
Dentistry
Edetic acid
Endodontics
Hydroxyapatite
Hydroxyapatites - chemistry
Materials Testing
Mineralization
Phosphoric acid
Phosphoric Acids
Raman
Raman spectroscopy
Remineralization
Sodium
Sodium hydroxide
Spectroscopy
Spectrum Analysis, Raman
Surface Properties
Tooth Remineralization
zinc
Zinc oxide
Zinc Oxide - chemistry
Zinc oxides
title A zinc oxide‐modified hydroxyapatite‐based cement facilitated new crystalline‐stoichiometric and amorphous apatite precipitation on dentine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20zinc%20oxide%E2%80%90modified%20hydroxyapatite%E2%80%90based%20cement%20facilitated%20new%20crystalline%E2%80%90stoichiometric%20and%20amorphous%20apatite%20precipitation%20on%20dentine&rft.jtitle=International%20endodontic%20journal&rft.au=Toledano,%20M.&rft.date=2017-12&rft.volume=50&rft.issue=S2&rft.spage=e109&rft.epage=e119&rft.pages=e109-e119&rft.issn=0143-2885&rft.eissn=1365-2591&rft_id=info:doi/10.1111/iej.12807&rft_dat=%3Cproquest_cross%3E1914291814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966788850&rft_id=info:pmid/28653756&rfr_iscdi=true