Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons

Near-field coupling to surface plasmon polaritons enables the observation of spin-forbidden dark excitonic states in monolayer WSe 2 . Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin–orbit coupling and spin–valley degrees of freedom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2017-09, Vol.12 (9), p.856-860
Hauptverfasser: Zhou, You, Scuri, Giovanni, Wild, Dominik S., High, Alexander A., Dibos, Alan, Jauregui, Luis A., Shu, Chi, De Greve, Kristiaan, Pistunova, Kateryna, Joe, Andrew Y., Taniguchi, Takashi, Watanabe, Kenji, Kim, Philip, Lukin, Mikhail D., Park, Hongkun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 860
container_issue 9
container_start_page 856
container_title Nature nanotechnology
container_volume 12
creator Zhou, You
Scuri, Giovanni
Wild, Dominik S.
High, Alexander A.
Dibos, Alan
Jauregui, Luis A.
Shu, Chi
De Greve, Kristiaan
Pistunova, Kateryna
Joe, Andrew Y.
Taniguchi, Takashi
Watanabe, Kenji
Kim, Philip
Lukin, Mikhail D.
Park, Hongkun
description Near-field coupling to surface plasmon polaritons enables the observation of spin-forbidden dark excitonic states in monolayer WSe 2 . Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin–orbit coupling and spin–valley degrees of freedom 1 , 2 , 3 , 4 . Depending on the spin configuration of the electron–hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark 5 , 6 , 7 , 8 . Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment 9 , making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe 2 monolayer is placed on top of a single-crystal silver film 10 , its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication 11 .
doi_str_mv 10.1038/nnano.2017.106
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1913833693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1935805960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-cf57cde4a054c8b93bf9ef67c441f4a7b7513c9c2578b1f1e7dfc91c5a0166e33</originalsourceid><addsrcrecordid>eNptkc1PwyAchonRuDm9ejQkXrx0gwKlHI3xKzHRg54bSkGrFCq0xv33MjcXYzzBGx6eH-EF4BijOUakXDgnnZ_nCPOUix0wxZyWGSGC7W73JZ-AgxhfEWK5yOk-mORlwRClaAq6h-Dr1j3DRoY3qD9VO3gXYeugHHzXKmntEg4vKUedonfNqAYfIvxoJXRahsy02jZQ-bG3K8_gYRyDkUrD3srYeQd7b2X49h6CPSNt1EebdQaeri4fL26yu_vr24vzu0zRXAyZMoyrRlOJGFVlLUhthDYFV5RiQyWvOcNECZUzXtbYYM0bowRWTCJcFJqQGThbe_vg30cdh6pro9LWSqf9GCssMCkJKcQKPf2DvvoxuPS6RBFWIiYKlKj5mlLBxxi0qfrQdjIsK4yqVRHVdxHVqoiUi3ThZKMd6043W_zn5xOwWAMxHblnHX7N_V_5BW1elno</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935805960</pqid></control><display><type>article</type><title>Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Zhou, You ; Scuri, Giovanni ; Wild, Dominik S. ; High, Alexander A. ; Dibos, Alan ; Jauregui, Luis A. ; Shu, Chi ; De Greve, Kristiaan ; Pistunova, Kateryna ; Joe, Andrew Y. ; Taniguchi, Takashi ; Watanabe, Kenji ; Kim, Philip ; Lukin, Mikhail D. ; Park, Hongkun</creator><creatorcontrib>Zhou, You ; Scuri, Giovanni ; Wild, Dominik S. ; High, Alexander A. ; Dibos, Alan ; Jauregui, Luis A. ; Shu, Chi ; De Greve, Kristiaan ; Pistunova, Kateryna ; Joe, Andrew Y. ; Taniguchi, Takashi ; Watanabe, Kenji ; Kim, Philip ; Lukin, Mikhail D. ; Park, Hongkun</creatorcontrib><description>Near-field coupling to surface plasmon polaritons enables the observation of spin-forbidden dark excitonic states in monolayer WSe 2 . Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin–orbit coupling and spin–valley degrees of freedom 1 , 2 , 3 , 4 . Depending on the spin configuration of the electron–hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark 5 , 6 , 7 , 8 . Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment 9 , making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe 2 monolayer is placed on top of a single-crystal silver film 10 , its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication 11 .</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2017.106</identifier><identifier>PMID: 28650440</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 142/126 ; 639/301/357/1018 ; 639/766/119 ; 639/766/400/1021 ; 639/925/927/1021 ; Data processing ; Dipole moments ; Electron spin ; Excitation spectra ; Excitons ; Information processing ; letter ; Materials Science ; Monolayers ; Nanotechnology ; Nanotechnology and Microengineering ; Optical properties ; Optics ; Optoelectronics ; Polaritons ; Silver ; Single crystals ; Spectral emissivity ; Spectroscopy ; Spin-orbit interactions</subject><ispartof>Nature nanotechnology, 2017-09, Vol.12 (9), p.856-860</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-cf57cde4a054c8b93bf9ef67c441f4a7b7513c9c2578b1f1e7dfc91c5a0166e33</citedby><cites>FETCH-LOGICAL-c429t-cf57cde4a054c8b93bf9ef67c441f4a7b7513c9c2578b1f1e7dfc91c5a0166e33</cites><orcidid>0000-0003-3701-8119 ; 0000-0002-9854-545X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2017.106$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2017.106$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28650440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, You</creatorcontrib><creatorcontrib>Scuri, Giovanni</creatorcontrib><creatorcontrib>Wild, Dominik S.</creatorcontrib><creatorcontrib>High, Alexander A.</creatorcontrib><creatorcontrib>Dibos, Alan</creatorcontrib><creatorcontrib>Jauregui, Luis A.</creatorcontrib><creatorcontrib>Shu, Chi</creatorcontrib><creatorcontrib>De Greve, Kristiaan</creatorcontrib><creatorcontrib>Pistunova, Kateryna</creatorcontrib><creatorcontrib>Joe, Andrew Y.</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Kim, Philip</creatorcontrib><creatorcontrib>Lukin, Mikhail D.</creatorcontrib><creatorcontrib>Park, Hongkun</creatorcontrib><title>Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Near-field coupling to surface plasmon polaritons enables the observation of spin-forbidden dark excitonic states in monolayer WSe 2 . Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin–orbit coupling and spin–valley degrees of freedom 1 , 2 , 3 , 4 . Depending on the spin configuration of the electron–hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark 5 , 6 , 7 , 8 . Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment 9 , making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe 2 monolayer is placed on top of a single-crystal silver film 10 , its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication 11 .</description><subject>140/125</subject><subject>142/126</subject><subject>639/301/357/1018</subject><subject>639/766/119</subject><subject>639/766/400/1021</subject><subject>639/925/927/1021</subject><subject>Data processing</subject><subject>Dipole moments</subject><subject>Electron spin</subject><subject>Excitation spectra</subject><subject>Excitons</subject><subject>Information processing</subject><subject>letter</subject><subject>Materials Science</subject><subject>Monolayers</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Optoelectronics</subject><subject>Polaritons</subject><subject>Silver</subject><subject>Single crystals</subject><subject>Spectral emissivity</subject><subject>Spectroscopy</subject><subject>Spin-orbit interactions</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkc1PwyAchonRuDm9ejQkXrx0gwKlHI3xKzHRg54bSkGrFCq0xv33MjcXYzzBGx6eH-EF4BijOUakXDgnnZ_nCPOUix0wxZyWGSGC7W73JZ-AgxhfEWK5yOk-mORlwRClaAq6h-Dr1j3DRoY3qD9VO3gXYeugHHzXKmntEg4vKUedonfNqAYfIvxoJXRahsy02jZQ-bG3K8_gYRyDkUrD3srYeQd7b2X49h6CPSNt1EebdQaeri4fL26yu_vr24vzu0zRXAyZMoyrRlOJGFVlLUhthDYFV5RiQyWvOcNECZUzXtbYYM0bowRWTCJcFJqQGThbe_vg30cdh6pro9LWSqf9GCssMCkJKcQKPf2DvvoxuPS6RBFWIiYKlKj5mlLBxxi0qfrQdjIsK4yqVRHVdxHVqoiUi3ThZKMd6043W_zn5xOwWAMxHblnHX7N_V_5BW1elno</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Zhou, You</creator><creator>Scuri, Giovanni</creator><creator>Wild, Dominik S.</creator><creator>High, Alexander A.</creator><creator>Dibos, Alan</creator><creator>Jauregui, Luis A.</creator><creator>Shu, Chi</creator><creator>De Greve, Kristiaan</creator><creator>Pistunova, Kateryna</creator><creator>Joe, Andrew Y.</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Kim, Philip</creator><creator>Lukin, Mikhail D.</creator><creator>Park, Hongkun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-9854-545X</orcidid></search><sort><creationdate>20170901</creationdate><title>Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons</title><author>Zhou, You ; Scuri, Giovanni ; Wild, Dominik S. ; High, Alexander A. ; Dibos, Alan ; Jauregui, Luis A. ; Shu, Chi ; De Greve, Kristiaan ; Pistunova, Kateryna ; Joe, Andrew Y. ; Taniguchi, Takashi ; Watanabe, Kenji ; Kim, Philip ; Lukin, Mikhail D. ; Park, Hongkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-cf57cde4a054c8b93bf9ef67c441f4a7b7513c9c2578b1f1e7dfc91c5a0166e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>140/125</topic><topic>142/126</topic><topic>639/301/357/1018</topic><topic>639/766/119</topic><topic>639/766/400/1021</topic><topic>639/925/927/1021</topic><topic>Data processing</topic><topic>Dipole moments</topic><topic>Electron spin</topic><topic>Excitation spectra</topic><topic>Excitons</topic><topic>Information processing</topic><topic>letter</topic><topic>Materials Science</topic><topic>Monolayers</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Optoelectronics</topic><topic>Polaritons</topic><topic>Silver</topic><topic>Single crystals</topic><topic>Spectral emissivity</topic><topic>Spectroscopy</topic><topic>Spin-orbit interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, You</creatorcontrib><creatorcontrib>Scuri, Giovanni</creatorcontrib><creatorcontrib>Wild, Dominik S.</creatorcontrib><creatorcontrib>High, Alexander A.</creatorcontrib><creatorcontrib>Dibos, Alan</creatorcontrib><creatorcontrib>Jauregui, Luis A.</creatorcontrib><creatorcontrib>Shu, Chi</creatorcontrib><creatorcontrib>De Greve, Kristiaan</creatorcontrib><creatorcontrib>Pistunova, Kateryna</creatorcontrib><creatorcontrib>Joe, Andrew Y.</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Kim, Philip</creatorcontrib><creatorcontrib>Lukin, Mikhail D.</creatorcontrib><creatorcontrib>Park, Hongkun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, You</au><au>Scuri, Giovanni</au><au>Wild, Dominik S.</au><au>High, Alexander A.</au><au>Dibos, Alan</au><au>Jauregui, Luis A.</au><au>Shu, Chi</au><au>De Greve, Kristiaan</au><au>Pistunova, Kateryna</au><au>Joe, Andrew Y.</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Kim, Philip</au><au>Lukin, Mikhail D.</au><au>Park, Hongkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>12</volume><issue>9</issue><spage>856</spage><epage>860</epage><pages>856-860</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Near-field coupling to surface plasmon polaritons enables the observation of spin-forbidden dark excitonic states in monolayer WSe 2 . Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin–orbit coupling and spin–valley degrees of freedom 1 , 2 , 3 , 4 . Depending on the spin configuration of the electron–hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark 5 , 6 , 7 , 8 . Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment 9 , making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe 2 monolayer is placed on top of a single-crystal silver film 10 , its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication 11 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28650440</pmid><doi>10.1038/nnano.2017.106</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-9854-545X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2017-09, Vol.12 (9), p.856-860
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_1913833693
source Springer Nature - Complete Springer Journals; Nature
subjects 140/125
142/126
639/301/357/1018
639/766/119
639/766/400/1021
639/925/927/1021
Data processing
Dipole moments
Electron spin
Excitation spectra
Excitons
Information processing
letter
Materials Science
Monolayers
Nanotechnology
Nanotechnology and Microengineering
Optical properties
Optics
Optoelectronics
Polaritons
Silver
Single crystals
Spectral emissivity
Spectroscopy
Spin-orbit interactions
title Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20dark%20excitons%20in%20atomically%20thin%20semiconductors%20via%20near-field%20coupling%20to%20surface%20plasmon%20polaritons&rft.jtitle=Nature%20nanotechnology&rft.au=Zhou,%20You&rft.date=2017-09-01&rft.volume=12&rft.issue=9&rft.spage=856&rft.epage=860&rft.pages=856-860&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2017.106&rft_dat=%3Cproquest_cross%3E1935805960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935805960&rft_id=info:pmid/28650440&rfr_iscdi=true