Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons
Near-field coupling to surface plasmon polaritons enables the observation of spin-forbidden dark excitonic states in monolayer WSe 2 . Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin–orbit coupling and spin–valley degrees of freedom...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2017-09, Vol.12 (9), p.856-860 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 860 |
---|---|
container_issue | 9 |
container_start_page | 856 |
container_title | Nature nanotechnology |
container_volume | 12 |
creator | Zhou, You Scuri, Giovanni Wild, Dominik S. High, Alexander A. Dibos, Alan Jauregui, Luis A. Shu, Chi De Greve, Kristiaan Pistunova, Kateryna Joe, Andrew Y. Taniguchi, Takashi Watanabe, Kenji Kim, Philip Lukin, Mikhail D. Park, Hongkun |
description | Near-field coupling to surface plasmon polaritons enables the observation of spin-forbidden dark excitonic states in monolayer WSe
2
.
Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin–orbit coupling and spin–valley degrees of freedom
1
,
2
,
3
,
4
. Depending on the spin configuration of the electron–hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark
5
,
6
,
7
,
8
. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment
9
, making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe
2
monolayer is placed on top of a single-crystal silver film
10
, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication
11
. |
doi_str_mv | 10.1038/nnano.2017.106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1913833693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1935805960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-cf57cde4a054c8b93bf9ef67c441f4a7b7513c9c2578b1f1e7dfc91c5a0166e33</originalsourceid><addsrcrecordid>eNptkc1PwyAchonRuDm9ejQkXrx0gwKlHI3xKzHRg54bSkGrFCq0xv33MjcXYzzBGx6eH-EF4BijOUakXDgnnZ_nCPOUix0wxZyWGSGC7W73JZ-AgxhfEWK5yOk-mORlwRClaAq6h-Dr1j3DRoY3qD9VO3gXYeugHHzXKmntEg4vKUedonfNqAYfIvxoJXRahsy02jZQ-bG3K8_gYRyDkUrD3srYeQd7b2X49h6CPSNt1EebdQaeri4fL26yu_vr24vzu0zRXAyZMoyrRlOJGFVlLUhthDYFV5RiQyWvOcNECZUzXtbYYM0bowRWTCJcFJqQGThbe_vg30cdh6pro9LWSqf9GCssMCkJKcQKPf2DvvoxuPS6RBFWIiYKlKj5mlLBxxi0qfrQdjIsK4yqVRHVdxHVqoiUi3ThZKMd6043W_zn5xOwWAMxHblnHX7N_V_5BW1elno</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935805960</pqid></control><display><type>article</type><title>Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Zhou, You ; Scuri, Giovanni ; Wild, Dominik S. ; High, Alexander A. ; Dibos, Alan ; Jauregui, Luis A. ; Shu, Chi ; De Greve, Kristiaan ; Pistunova, Kateryna ; Joe, Andrew Y. ; Taniguchi, Takashi ; Watanabe, Kenji ; Kim, Philip ; Lukin, Mikhail D. ; Park, Hongkun</creator><creatorcontrib>Zhou, You ; Scuri, Giovanni ; Wild, Dominik S. ; High, Alexander A. ; Dibos, Alan ; Jauregui, Luis A. ; Shu, Chi ; De Greve, Kristiaan ; Pistunova, Kateryna ; Joe, Andrew Y. ; Taniguchi, Takashi ; Watanabe, Kenji ; Kim, Philip ; Lukin, Mikhail D. ; Park, Hongkun</creatorcontrib><description>Near-field coupling to surface plasmon polaritons enables the observation of spin-forbidden dark excitonic states in monolayer WSe
2
.
Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin–orbit coupling and spin–valley degrees of freedom
1
,
2
,
3
,
4
. Depending on the spin configuration of the electron–hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark
5
,
6
,
7
,
8
. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment
9
, making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe
2
monolayer is placed on top of a single-crystal silver film
10
, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication
11
.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2017.106</identifier><identifier>PMID: 28650440</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 142/126 ; 639/301/357/1018 ; 639/766/119 ; 639/766/400/1021 ; 639/925/927/1021 ; Data processing ; Dipole moments ; Electron spin ; Excitation spectra ; Excitons ; Information processing ; letter ; Materials Science ; Monolayers ; Nanotechnology ; Nanotechnology and Microengineering ; Optical properties ; Optics ; Optoelectronics ; Polaritons ; Silver ; Single crystals ; Spectral emissivity ; Spectroscopy ; Spin-orbit interactions</subject><ispartof>Nature nanotechnology, 2017-09, Vol.12 (9), p.856-860</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-cf57cde4a054c8b93bf9ef67c441f4a7b7513c9c2578b1f1e7dfc91c5a0166e33</citedby><cites>FETCH-LOGICAL-c429t-cf57cde4a054c8b93bf9ef67c441f4a7b7513c9c2578b1f1e7dfc91c5a0166e33</cites><orcidid>0000-0003-3701-8119 ; 0000-0002-9854-545X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2017.106$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2017.106$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28650440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, You</creatorcontrib><creatorcontrib>Scuri, Giovanni</creatorcontrib><creatorcontrib>Wild, Dominik S.</creatorcontrib><creatorcontrib>High, Alexander A.</creatorcontrib><creatorcontrib>Dibos, Alan</creatorcontrib><creatorcontrib>Jauregui, Luis A.</creatorcontrib><creatorcontrib>Shu, Chi</creatorcontrib><creatorcontrib>De Greve, Kristiaan</creatorcontrib><creatorcontrib>Pistunova, Kateryna</creatorcontrib><creatorcontrib>Joe, Andrew Y.</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Kim, Philip</creatorcontrib><creatorcontrib>Lukin, Mikhail D.</creatorcontrib><creatorcontrib>Park, Hongkun</creatorcontrib><title>Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Near-field coupling to surface plasmon polaritons enables the observation of spin-forbidden dark excitonic states in monolayer WSe
2
.
Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin–orbit coupling and spin–valley degrees of freedom
1
,
2
,
3
,
4
. Depending on the spin configuration of the electron–hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark
5
,
6
,
7
,
8
. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment
9
, making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe
2
monolayer is placed on top of a single-crystal silver film
10
, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication
11
.</description><subject>140/125</subject><subject>142/126</subject><subject>639/301/357/1018</subject><subject>639/766/119</subject><subject>639/766/400/1021</subject><subject>639/925/927/1021</subject><subject>Data processing</subject><subject>Dipole moments</subject><subject>Electron spin</subject><subject>Excitation spectra</subject><subject>Excitons</subject><subject>Information processing</subject><subject>letter</subject><subject>Materials Science</subject><subject>Monolayers</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Optoelectronics</subject><subject>Polaritons</subject><subject>Silver</subject><subject>Single crystals</subject><subject>Spectral emissivity</subject><subject>Spectroscopy</subject><subject>Spin-orbit interactions</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkc1PwyAchonRuDm9ejQkXrx0gwKlHI3xKzHRg54bSkGrFCq0xv33MjcXYzzBGx6eH-EF4BijOUakXDgnnZ_nCPOUix0wxZyWGSGC7W73JZ-AgxhfEWK5yOk-mORlwRClaAq6h-Dr1j3DRoY3qD9VO3gXYeugHHzXKmntEg4vKUedonfNqAYfIvxoJXRahsy02jZQ-bG3K8_gYRyDkUrD3srYeQd7b2X49h6CPSNt1EebdQaeri4fL26yu_vr24vzu0zRXAyZMoyrRlOJGFVlLUhthDYFV5RiQyWvOcNECZUzXtbYYM0bowRWTCJcFJqQGThbe_vg30cdh6pro9LWSqf9GCssMCkJKcQKPf2DvvoxuPS6RBFWIiYKlKj5mlLBxxi0qfrQdjIsK4yqVRHVdxHVqoiUi3ThZKMd6043W_zn5xOwWAMxHblnHX7N_V_5BW1elno</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Zhou, You</creator><creator>Scuri, Giovanni</creator><creator>Wild, Dominik S.</creator><creator>High, Alexander A.</creator><creator>Dibos, Alan</creator><creator>Jauregui, Luis A.</creator><creator>Shu, Chi</creator><creator>De Greve, Kristiaan</creator><creator>Pistunova, Kateryna</creator><creator>Joe, Andrew Y.</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Kim, Philip</creator><creator>Lukin, Mikhail D.</creator><creator>Park, Hongkun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-9854-545X</orcidid></search><sort><creationdate>20170901</creationdate><title>Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons</title><author>Zhou, You ; Scuri, Giovanni ; Wild, Dominik S. ; High, Alexander A. ; Dibos, Alan ; Jauregui, Luis A. ; Shu, Chi ; De Greve, Kristiaan ; Pistunova, Kateryna ; Joe, Andrew Y. ; Taniguchi, Takashi ; Watanabe, Kenji ; Kim, Philip ; Lukin, Mikhail D. ; Park, Hongkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-cf57cde4a054c8b93bf9ef67c441f4a7b7513c9c2578b1f1e7dfc91c5a0166e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>140/125</topic><topic>142/126</topic><topic>639/301/357/1018</topic><topic>639/766/119</topic><topic>639/766/400/1021</topic><topic>639/925/927/1021</topic><topic>Data processing</topic><topic>Dipole moments</topic><topic>Electron spin</topic><topic>Excitation spectra</topic><topic>Excitons</topic><topic>Information processing</topic><topic>letter</topic><topic>Materials Science</topic><topic>Monolayers</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Optoelectronics</topic><topic>Polaritons</topic><topic>Silver</topic><topic>Single crystals</topic><topic>Spectral emissivity</topic><topic>Spectroscopy</topic><topic>Spin-orbit interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, You</creatorcontrib><creatorcontrib>Scuri, Giovanni</creatorcontrib><creatorcontrib>Wild, Dominik S.</creatorcontrib><creatorcontrib>High, Alexander A.</creatorcontrib><creatorcontrib>Dibos, Alan</creatorcontrib><creatorcontrib>Jauregui, Luis A.</creatorcontrib><creatorcontrib>Shu, Chi</creatorcontrib><creatorcontrib>De Greve, Kristiaan</creatorcontrib><creatorcontrib>Pistunova, Kateryna</creatorcontrib><creatorcontrib>Joe, Andrew Y.</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Kim, Philip</creatorcontrib><creatorcontrib>Lukin, Mikhail D.</creatorcontrib><creatorcontrib>Park, Hongkun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, You</au><au>Scuri, Giovanni</au><au>Wild, Dominik S.</au><au>High, Alexander A.</au><au>Dibos, Alan</au><au>Jauregui, Luis A.</au><au>Shu, Chi</au><au>De Greve, Kristiaan</au><au>Pistunova, Kateryna</au><au>Joe, Andrew Y.</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Kim, Philip</au><au>Lukin, Mikhail D.</au><au>Park, Hongkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>12</volume><issue>9</issue><spage>856</spage><epage>860</epage><pages>856-860</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Near-field coupling to surface plasmon polaritons enables the observation of spin-forbidden dark excitonic states in monolayer WSe
2
.
Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin–orbit coupling and spin–valley degrees of freedom
1
,
2
,
3
,
4
. Depending on the spin configuration of the electron–hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark
5
,
6
,
7
,
8
. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment
9
, making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe
2
monolayer is placed on top of a single-crystal silver film
10
, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication
11
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28650440</pmid><doi>10.1038/nnano.2017.106</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-9854-545X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2017-09, Vol.12 (9), p.856-860 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_1913833693 |
source | Springer Nature - Complete Springer Journals; Nature |
subjects | 140/125 142/126 639/301/357/1018 639/766/119 639/766/400/1021 639/925/927/1021 Data processing Dipole moments Electron spin Excitation spectra Excitons Information processing letter Materials Science Monolayers Nanotechnology Nanotechnology and Microengineering Optical properties Optics Optoelectronics Polaritons Silver Single crystals Spectral emissivity Spectroscopy Spin-orbit interactions |
title | Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20dark%20excitons%20in%20atomically%20thin%20semiconductors%20via%20near-field%20coupling%20to%20surface%20plasmon%20polaritons&rft.jtitle=Nature%20nanotechnology&rft.au=Zhou,%20You&rft.date=2017-09-01&rft.volume=12&rft.issue=9&rft.spage=856&rft.epage=860&rft.pages=856-860&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2017.106&rft_dat=%3Cproquest_cross%3E1935805960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935805960&rft_id=info:pmid/28650440&rfr_iscdi=true |