Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons
Near-field coupling to surface plasmon polaritons enables the observation of spin-forbidden dark excitonic states in monolayer WSe 2 . Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin–orbit coupling and spin–valley degrees of freedom...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2017-09, Vol.12 (9), p.856-860 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Near-field coupling to surface plasmon polaritons enables the observation of spin-forbidden dark excitonic states in monolayer WSe
2
.
Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin–orbit coupling and spin–valley degrees of freedom
1
,
2
,
3
,
4
. Depending on the spin configuration of the electron–hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark
5
,
6
,
7
,
8
. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment
9
, making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe
2
monolayer is placed on top of a single-crystal silver film
10
, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication
11
. |
---|---|
ISSN: | 1748-3387 1748-3395 |
DOI: | 10.1038/nnano.2017.106 |