Hiding in the swamp: new capillariid nematode parasitizing New Zealand brown mudfish

The extent of New Zealand's freshwater fish-parasite diversity has yet to be fully revealed, with host–parasite relationships still to be described from nearly half the known fish community. While advances in the number of fish species examined and parasite taxa described are being made, some p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of helminthology 2018-05, Vol.92 (3), p.379-386
Hauptverfasser: Jorge, F., White, R.S.A., Paterson, R.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The extent of New Zealand's freshwater fish-parasite diversity has yet to be fully revealed, with host–parasite relationships still to be described from nearly half the known fish community. While advances in the number of fish species examined and parasite taxa described are being made, some parasite groups, such as nematodes, remain poorly understood. In the present study we combined morphological and molecular analyses to characterize a capillariid nematode found infecting the swim bladder of the brown mudfish Neochanna apoda, an endemic New Zealand fish from peat-swamp-forests. Morphologically, the studied nematodes are distinct from other Capillariinae taxa by the features of the male posterior end, namely the shape of the bursa lobes, and shape of spicule distal end. Male specimens were classified into three different types according to differences in the shape of the bursa lobes at the posterior end, but only one was successfully characterized molecularly. Molecular analysis indicated that the studied capillariid is distinct from other genera. However, inferences about the phylogenetic position of the capillariid reported here will remain uncertain, due to the limited number of Capillariinae taxa characterized molecularly. The discovery of this new capillariid, which atypically infects the swim bladder of its host, which itself inhabits a very unique ecosystem, underlines the very interesting evolutionary history of this parasite, which for now will remain unresolved.
ISSN:0022-149X
1475-2697
DOI:10.1017/S0022149X17000530