Competing Stereocomplexation and Homocrystallization of Poly(l‑lactic acid)/Poly(d‑lactic acid) Racemic Mixture: Effects of Miscible Blending with Other Polymers
Promoting the stereocomplexation ability of high-molecular-weight poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) is an efficient way to improve the thermal resistance of the resulting materials. Herein, we studied the competing crystallization kinetics, polymorphic crystalline structure...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2017-07, Vol.121 (28), p.6934-6943 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Promoting the stereocomplexation ability of high-molecular-weight poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) is an efficient way to improve the thermal resistance of the resulting materials. Herein, we studied the competing crystallization kinetics, polymorphic crystalline structure, and lamellae structure of the PLLA/PDLA component in its miscible blends with poly(vinyl acetate) (PVAc) and proposed a method to improve the stereocomplexation ability of PLLA and PDLA through miscible blending with the other polymer. Crystallization of the PLLA/PDLA component is suppressed after the addition of PVAc, due to the dilution effect. The stereocomplexation ability of PLLA and PDLA is enhanced by blending with PVAc; this becomes more obvious at a high PVAc content (≥50 wt %) but less significant with the further increase of PLLA, PDLA molecular weights. Almost exclusive formation of SCs is achieved for PLLA and PDLA after blending with a large proportion of PVAc (e.g., 75 wt %). Incorporation of PVAc also facilitates the HC-to-SC structural reorganization upon heating. The increased chain mobility, decreased equilibrium melting point, and enhanced intermolecular interactions may account for the preferential stereocomplexation in PLLA/PDLA/PVAc blends. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/acs.jpcb.7b03287 |