Structural Parameters of the Proximal Femur by 3-Dimensional Dual-Energy X-ray Absorptiometry Software: Comparison With Quantitative Computed Tomography
Abstract Structural parameters of the proximal femur evaluate the strength of the bone and its susceptibility to fracture. These parameters are computed from dual-energy X-ray absorptiometry (DXA) or from quantitative computed tomography (QCT). The 3-dimensional (3D)-DXA software solution provides 3...
Gespeichert in:
Veröffentlicht in: | Journal of clinical densitometry 2018-10, Vol.21 (4), p.550-562 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Structural parameters of the proximal femur evaluate the strength of the bone and its susceptibility to fracture. These parameters are computed from dual-energy X-ray absorptiometry (DXA) or from quantitative computed tomography (QCT). The 3-dimensional (3D)-DXA software solution provides 3D models of the proximal femur shape and bone density from anteroposterior DXA scans. In this paper, we present and evaluate a new approach to compute structural parameters using 3D-DXA software. A cohort of 60 study subjects (60.9 ± 14.7 yr) with DXA and QCT examinations was collected. 3D femoral models obtained by QCT and 3D-DXA software were aligned using rigid registration techniques for comparison purposes. Geometric, cross-sectional, and volumetric structural parameters were computed at the narrow neck, intertrochanteric, and lower shaft regions for both QCT and 3D-DXA models. The accuracy of 3D-DXA structural parameters was evaluated in comparison with QCT. Correlation coefficients ( r ) between geometric parameters computed by QCT and 3D-DXA software were 0.86 for the femoral neck axis length and 0.71 for the femoral neck shaft angle. Correlation coefficients ranged from 0.86 to 0.96 for the cross-sectional parameters and from 0.84 to 0.97 for the volumetric structural parameters. Our study demonstrated that accurate estimates of structural parameters for the femur can be obtained from 3D-DXA models. This provides clinicians with 3D indexes related to the femoral strength from routine anteroposterior DXA scans, which could potentially improve osteoporosis management and fracture prevention. |
---|---|
ISSN: | 1094-6950 1559-0747 |
DOI: | 10.1016/j.jocd.2017.05.002 |