Lévy flights versus Lévy walks in bounded domains
Lévy flights and Lévy walks serve as two paradigms of random walks resembling common features but also bearing fundamental differences. One of the main dissimilarities is the discontinuity versus continuity of their trajectories and infinite versus finite propagation velocity. As a consequence, a we...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2017-05, Vol.95 (5-1), p.052102-052102, Article 052102 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lévy flights and Lévy walks serve as two paradigms of random walks resembling common features but also bearing fundamental differences. One of the main dissimilarities is the discontinuity versus continuity of their trajectories and infinite versus finite propagation velocity. As a consequence, a well-developed theory of Lévy flights is associated with their pathological physical properties, which in turn are resolved by the concept of Lévy walks. Here, we explore Lévy flight and Lévy walk models on bounded domains, examining their differences and analogies. We investigate analytically and numerically whether and under which conditions both approaches yield similar results in terms of selected statistical observables characterizing the motion: the survival probability, mean first passage time, and stationary probability density functions. It is demonstrated that the similarity of the models is affected by the type of boundary conditions and the value of the stability index defining the asymptotics of the jump length distribution. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.95.052102 |