Er3+/Fe3+ Stimulated Electroactive, Visible Light Emitting, and High Dielectric Flexible PVDF Film Based Piezoelectric Nanogenerators: A Simple and Superior Self-Powered Energy Harvester with Remarkable Power Density
The design of an energy-harvesting unit with superior output characteristics, i.e., high power density, is a great technological challenge in the present time. Here, simple, lightweight, flexible, and cost-effective piezoelectric nanogenerators (PENGs) have been fabricated by integrating the aluminu...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-07, Vol.9 (27), p.23048-23059 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The design of an energy-harvesting unit with superior output characteristics, i.e., high power density, is a great technological challenge in the present time. Here, simple, lightweight, flexible, and cost-effective piezoelectric nanogenerators (PENGs) have been fabricated by integrating the aluminum electrodes onto Er3+/Fe3+ stimulated electroactive, visible-light-emitting, and large dielectric PVDF films in which ErCl3·6H2O and Fe(NO3)3·9H2O act as the catalytic agents for electroactive β polymorph nucleation and the enhancement of dielectric properties. The developed PENGs exhibit excellent energy-harvesting performance with very high power density and very fast charging ability compared with the previously reported PVDF-assisted prototype nanogenerators. The PENGs lead to very large power density (∼160 and ∼55.34 mW cm–3) under periodic finger imparting for Er3+- and Fe3+-stimulated PVDF-film-based energy-harvester units, respectively. The fabricated self-powered PENG is also able to light up 54 commercially available light-emitting diodes. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.7b08008 |