Robust real-time 3D single-particle tracking using a dynamically moving laser spot
Real-time three-dimensional (3D) single-particle tracking uses optical feedback to lock on to freely diffusing nanoscale fluorescent particles, permitting precise 3D localization and continuous spectroscopic interrogation. Here we describe a new method of real-time 3D single-particle tracking wherei...
Gespeichert in:
Veröffentlicht in: | Optics letters 2017-06, Vol.42 (12), p.2390-2393 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Real-time three-dimensional (3D) single-particle tracking uses optical feedback to lock on to freely diffusing nanoscale fluorescent particles, permitting precise 3D localization and continuous spectroscopic interrogation. Here we describe a new method of real-time 3D single-particle tracking wherein a diffraction-limited laser spot is dynamically swept through the detection volume in three dimensions using a two-dimensional (2D) electro-optic deflector and a tunable acoustic gradient lens. This optimized method, called 3D dynamic photon localization tracking (3D-DyPLoT), enables high-speed real-time tracking of single silica-coated non-blinking quantum dots (∼30 nm diameter) with diffusive speeds exceeding 10 μm
/s at count rates as low as 10 kHz, as well as YFP-labeled virus-like particles. The large effective detection area (1 μm×1 μm×4 μm) allows the system to easily pick up fast-moving particles, while still demonstrating high localization precision (σ
=6.6 nm, σ
=8.7 nm, and σ
=15.6 nm). Overall, 3D-DyPLoT provides a fast and robust method for real-time 3D tracking of fast and lowly emitting particles, based on a single excitation and detection pathway, paving the way to more widespread application to relevant biological problems. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.42.002390 |