Quantification and modeling of nanomechanical properties of chlorpropamide α, β, and γ conformational polymorphs
The nanomechanical properties of the α-, β-, and γ- conformational polymorphs of chlorpropamide were determined by the dynamic contact module continuous stiffness measurement at nanoindenter. The mechanical anisotropy of the α-polymorph was confirmed by indenting different faces, and its deformation...
Gespeichert in:
Veröffentlicht in: | European journal of pharmaceutical sciences 2017-12, Vol.110, p.109-116 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The nanomechanical properties of the α-, β-, and γ- conformational polymorphs of chlorpropamide were determined by the dynamic contact module continuous stiffness measurement at nanoindenter. The mechanical anisotropy of the α-polymorph was confirmed by indenting different faces, and its deformational behavior was assigned as ductile. Based on the nanoindentation results, the β and γ forms are moderately hard with plastic flow at contact points. The results revealed a correlation between Young's modulus and inter-planar interaction energy with regard to crystal orientation. Interpretation of the measurements was assisted by two- and three-dimensional periodic density functional theory (DFT) calculations, yielding inter-planar energies of polymorphs along the cell vectors and exhibiting a very good match with the experimental observations. The results suggest that the inter-planar interaction energy could serve as a first-order indicator for ranking the mechanical propensity of crystalline active ingredients. The study confirms the practical aspect of using the α- form for preparing chlorpropamide tablets with a direct compression procedure due to its substantial level of ductility.
[Display omitted] |
---|---|
ISSN: | 0928-0987 1879-0720 |
DOI: | 10.1016/j.ejps.2017.06.013 |