Functional Innovations and the Conquest of the Oceans by Acanthomorph Fishes
The world’s oceans are home to many fantastic creatures, including about 16,000 species of actinopterygian, or ray-finned, fishes. Notably, 85% of marine fish species come from a single actinopterygian subgroup, the acanthomorph or spiny-rayed fishes. Here, we review eight functional innovations fou...
Gespeichert in:
Veröffentlicht in: | Current biology 2017-06, Vol.27 (11), p.R550-R557 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The world’s oceans are home to many fantastic creatures, including about 16,000 species of actinopterygian, or ray-finned, fishes. Notably, 85% of marine fish species come from a single actinopterygian subgroup, the acanthomorph or spiny-rayed fishes. Here, we review eight functional innovations found in marine acanthomorphs that have been instrumental in the adaptive radiation of this group in the marine realm. Jaw protrusion substantially enhances the suction feeding mechanism found in all fish. Fin spines serve as a major deterrent to predators and enhance the locomotor function of fins. Pharyngognathy, a specialization of the second pair of jaws in the pharynx, enhances the ability of fishes to process hard and tough prey. Endothermy allows fishes to function at high levels of physiological performance in cold waters and facilitates frequent movement across strong thermal gradients found in the open ocean. Intramandibular joints enhance feeding for fishes that bite and scrape prey attached to hard surfaces. Antifreeze proteins prevent ice crystal growth in extracellular fluids, allowing fish to function in cold waters that would otherwise freeze them. Air-breathing allowed fishes at the water’s edge to exploit terrestrial habitats. Finally, bioluminescence functions in communication, attracting prey and in hiding from predators, particularly for fishes of the deep ocean. All of these innovations have evolved multiple times in fishes. The frequent occurrence of convergent evolution of these complex functional novelties speaks to the persistence and potency of the selective forces in marine environments that challenge fishes and stimulate innovation.
Wainwright and Longo review eight biological innovations that enabled acanthomorphs to become the dominant group of fish in the modern ocean. |
---|---|
ISSN: | 0960-9822 1879-0445 |
DOI: | 10.1016/j.cub.2017.03.044 |