Suppression of the vacuolar invertase gene delays senescent sweetening in chipping potatoes

BACKGROUND Potato chip processors require potato tubers that meet quality specifications for fried chip color, and color depends largely upon tuber sugar contents. At later times in storage, potatoes accumulate sucrose, glucose, and fructose. This developmental process, senescent sweetening, manifes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2018-01, Vol.98 (1), p.354-360
Hauptverfasser: Wiberley‐Bradford, Amy E, Bethke, Paul C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND Potato chip processors require potato tubers that meet quality specifications for fried chip color, and color depends largely upon tuber sugar contents. At later times in storage, potatoes accumulate sucrose, glucose, and fructose. This developmental process, senescent sweetening, manifests as a blush of color near the center of the fried chip, becomes more severe with time, and limits the storage period. Vacuolar invertase (VInv) converts sucrose to glucose and fructose and is hypothesized to play a role in senescent sweetening. To test this hypothesis, senescent sweetening was quantified in multiple lines of potato with reduced VInv expression. RESULTS Chip darkening from senescent sweetening was delayed by about 4 weeks for tubers with reduced VInv expression. A strong positive correlation between frequency of dark chips and tuber hexose content was observed. Tubers with reduced VInv expression had lower hexose to sucrose ratios than controls. CONCLUSION VInv activity contributes to reducing sugar accumulation during senescent sweetening. Sucrose breakdown during frying may contribute to chip darkening. Suppressing VInv expression increases the storage period of the chipping potato crop, which is an important consideration, as potatoes with reduced VInv expression are entering commercial production in the USA. © 2017 Society of Chemical Industry
ISSN:0022-5142
1097-0010
DOI:10.1002/jsfa.8478