The Effect of Gabapentin and Tramadol in Cancer Pain Induced by Glioma Cell in Rat Femur
ABSTRACT Preclinical Research The presence of pain as part of the cancer process is variable. Glioblastoma multiform (GBM) can produce bone metastasis, a condition that involves other pathological phenotypes including neuropathic and inflammatory pain. Tramadol and gabapentin are drugs used in the t...
Gespeichert in:
Veröffentlicht in: | Drug development research 2017-08, Vol.78 (5), p.173-183 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
Preclinical Research
The presence of pain as part of the cancer process is variable. Glioblastoma multiform (GBM) can produce bone metastasis, a condition that involves other pathological phenotypes including neuropathic and inflammatory pain. Tramadol and gabapentin are drugs used in the treatment of neuropathic pain. However, there are no studies evaluating their analgesic effects in bone metastasis. We produced a pain model induced by the inoculation of glioma cells (105) into the rat femur, by perforating the intercodiloid fossa. Painful behavior was evaluated by measuring mechanical allodynia using the Von Frey test while thermal hyperalgesia was assessed in the plantar test. Histopathological features were evaluated and antinociceptive responses were compared using tramadol and gabapentin. The inoculation of cells inside the right femur produced nociceptive behaviors. Tramadol and gabapentin produced an anti‐allodynic effect in this condition, but tramadol did not produce an anti‐hyperalgesic response. The development of this model will allow us to perform tests to elucidate the pathology of bone metastasis, cancer pain, and in particular the pain produced by glioma. Drug Dev Res 78 : 173–183, 2017. © 2017 Wiley Periodicals, Inc. |
---|---|
ISSN: | 0272-4391 1098-2299 |
DOI: | 10.1002/ddr.21389 |