Observation of Various and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy
The quest for materials hosting topologically protected skyrmionic spin textures continues to be fueled by the promise of novel devices. Although many materials have demonstrated the existence of such spin textures, major challenges remain to be addressed before devices based on magnetic skyrmions c...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2017-08, Vol.29 (29), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The quest for materials hosting topologically protected skyrmionic spin textures continues to be fueled by the promise of novel devices. Although many materials have demonstrated the existence of such spin textures, major challenges remain to be addressed before devices based on magnetic skyrmions can be realized. For example, being able to create and manipulate skyrmionic spin textures at room temperature is of great importance for further technological applications because they can adapt to various external stimuli acting as information carriers in spintronic devices. Here, the first observation of skyrmionic magnetic bubbles with variable topological spin textures formed at room temperature in a frustrated kagome Fe3Sn2 magnet with uniaxial magnetic anisotropy is reported. The magnetization dynamics are investigated using in situ Lorentz transmission electron microscopy, revealing that the transformation between different magnetic bubbles and domains is via the motion of Bloch lines driven by an applied external magnetic field. These results demonstrate that Fe3Sn2 facilitates a unique magnetic control of topological spin textures at room temperature, making it a promising candidate for further skyrmion‐based spintronic devices.
Various and spontaneous magnetic skyrmionic bubbles are observed for the first time at room temperature in a frustrated kagome Fe3Sn2 magnet. The magnetization dynamics are investigated using Lorentz transmission electron microscopy, revealing that transformations between different bubbles are via motion of Bloch lines driven by the magnetic field. These results demonstrate that Fe3Sn2 facilitates control of topological spin textures at room temperature. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.201701144 |