Spin-Orbit Coupling Controlled J=3/2 Electronic Ground State in 5d^{3} Oxides

Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca_{3}LiOsO_{6} and Ba_{2}YOsO_{6}, which reveals a dramatic spitting of the t_{2g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-05, Vol.118 (20), p.207202-207202
Hauptverfasser: Taylor, A E, Calder, S, Morrow, R, Feng, H L, Upton, M H, Lumsden, M D, Yamaura, K, Woodward, P M, Christianson, A D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca_{3}LiOsO_{6} and Ba_{2}YOsO_{6}, which reveals a dramatic spitting of the t_{2g} manifold. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal that the ground state of 5d^{3}-based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J=3/2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5d systems and introduces a new arena in the search for spin-orbit controlled phases of matter.
ISSN:1079-7114
DOI:10.1103/PhysRevLett.118.207202