General Synthetic Route toward Highly Dispersed Metal Clusters Enabled by Poly(ionic liquid)s
The ability to synthesize a broad spectrum of metal clusters (MCs) with their size controllable on a subnanometer scale presents an enticing prospect for exploring nanosize-dependent properties. Here we report an innovative design of a capping agent from a polytriazolium poly(ionic liquid) (PIL) in...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2017-07, Vol.139 (26), p.8971-8976 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability to synthesize a broad spectrum of metal clusters (MCs) with their size controllable on a subnanometer scale presents an enticing prospect for exploring nanosize-dependent properties. Here we report an innovative design of a capping agent from a polytriazolium poly(ionic liquid) (PIL) in a vesicular form in solution that allows for crafting a variety of MCs including transition metals, noble metals, and their bimetallic alloy with precisely controlled sizes (∼1 nm) and record-high catalytic performance. The ultrastrong stabilization power is a result of an unusual synergy between the conventional binding sites in the heterocyclic cations in PIL and an in situ generated polycarbene structure induced simultaneously to the reduction reaction. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.7b03357 |