Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes
This research was carried out on plants Taraxacum officinale, Plantago lanceolata, Betula pendula and Robinia pseudoacacia growing in urban biotopes with different levels of heavy metal contamination in the city of Dąbrowa Górnicza (southern Poland). Based on the pollution index, the highest heavy m...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2017-09, Vol.183, p.471-482 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research was carried out on plants Taraxacum officinale, Plantago lanceolata, Betula pendula and Robinia pseudoacacia growing in urban biotopes with different levels of heavy metal contamination in the city of Dąbrowa Górnicza (southern Poland). Based on the pollution index, the highest heavy metal contamination was determined in the site 4 (connected with industry emitters) and 6 (high traffic). The metal accumulation index (MAI) values ranged within the biotopes in Dąbrowa Górnicza between 7.3 and 20.6 for R. pseudoacacia, 4.71–23.1 for P. lanceolata, 4.68–28.1 for T. officinale and 10.5–27.2 for B. pendula. Increasing tendency in proline content in biotopes connected with high traffic was found in the leaves of investigated plants (except R. pseudoacacia). Similar tendency was observed for ascorbic acid content in the foliage of the plants as well as in T. officinalle in stands connected industrial emission. Non-protein thiols content increased especially in the leaves of R. pseudoacacia in biotopes with high traffic emissions as well as in T. officinale in stands connected with industry. The mean values of APTI (Air Pollution Tolerance Index) within the city of Dąbrowa Górnicza for investigated plants were found in the following ascending order P. lanceolata |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2017.05.128 |