A review of biocompatible metal injection moulding process parameters for biomedical applications

Biocompatible metals have been revolutionizing the biomedical field, predominantly in human implant applications, where these metals widely used as a substitute to or as function restoration of degenerated tissues or organs. Powder metallurgy techniques, in specific the metal injection moulding (MIM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2017-09, Vol.78, p.1263-1276
Hauptverfasser: Hamidi, M.F.F.A., Harun, W.S.W., Samykano, M., Ghani, S.A.C., Ghazalli, Z., Ahmad, F., Sulong, A.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1276
container_issue
container_start_page 1263
container_title Materials Science & Engineering C
container_volume 78
creator Hamidi, M.F.F.A.
Harun, W.S.W.
Samykano, M.
Ghani, S.A.C.
Ghazalli, Z.
Ahmad, F.
Sulong, A.B.
description Biocompatible metals have been revolutionizing the biomedical field, predominantly in human implant applications, where these metals widely used as a substitute to or as function restoration of degenerated tissues or organs. Powder metallurgy techniques, in specific the metal injection moulding (MIM) process, have been employed for the fabrication of controlled porous structures used for dental and orthopaedic surgical implants. The porous metal implant allows bony tissue ingrowth on the implant surface, thereby enhancing fixation and recovery. This paper elaborates a systematic classification of various biocompatible metals from the aspect of MIM process as used in medical industries. In this study, three biocompatible metals are reviewed-stainless steels, cobalt alloys, and titanium alloys. The applications of MIM technology in biomedicine focusing primarily on the MIM process setting parameters discussed thoroughly. This paper should be of value to investigators who are interested in state of the art of metal powder metallurgy, particularly the MIM technology for biocompatible metal implant design and development. •Biocompatible metals have been revolutionising the biomedical field.•Metal injection moulding (MIM) process have been utilised for controlled porous structures used for dental and orthopaedic surgical implants.•Systematic classification of various biocompatible metals from the aspect of MIM process as used in medical industries is discussed thoroughly•Three biocompatible metals are reviewed namely stainless steels, cobalt alloys, and titanium alloys.•The applications of MIM technology in biomedicine focusing primarily on the MIM process setting parameters discussed.
doi_str_mv 10.1016/j.msec.2017.05.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1905737046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493117317186</els_id><sourcerecordid>1905737046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-39270993ec4463256469c5e309a9e2ce33deeaff178571ecec8ee85ba2cb761a3</originalsourceid><addsrcrecordid>eNp9kc1q3TAUhEVoSG5u8gJZFEE32djVj2VZkE0IaVoIdNOuhax7HGRsy5Xslrx9jrlJF110JXH4ZhhmCLnmrOSM15_7cszgS8G4Lpkq8XRCdrzRsmDc8A9kx4xoispIfk4ucu4ZqxupxRk5F43SytRqR9wdTfA7wB8aO9qG6OM4uyW0A9ARFjfQMPXglxAnOsZ1OITpmc4pesiZzi45hCBl2sW0qUc4BI8iN88DfjZZviSnnRsyXL29e_Lzy8OP-6_F0_fHb_d3T4WvBF8KaYRmxkjwVVVLoeqqNl6BZMYZEB6kPAC4ruMas3Pw4BuARrVO-FbX3Mk9uTn6YrxfK-TFjiF7GAY3QVyz5YYpLTVD9z359A_axzVNmA6pSopaGcmQEkfKp5hzgs7OKYwuvVjO7DaA7e02gN0GsExZPKHo45v12mIbfyXvjSNwewQAu8Dik80-wOSxuYRF20MM__N_Bf8Ql_0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943265930</pqid></control><display><type>article</type><title>A review of biocompatible metal injection moulding process parameters for biomedical applications</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hamidi, M.F.F.A. ; Harun, W.S.W. ; Samykano, M. ; Ghani, S.A.C. ; Ghazalli, Z. ; Ahmad, F. ; Sulong, A.B.</creator><creatorcontrib>Hamidi, M.F.F.A. ; Harun, W.S.W. ; Samykano, M. ; Ghani, S.A.C. ; Ghazalli, Z. ; Ahmad, F. ; Sulong, A.B.</creatorcontrib><description>Biocompatible metals have been revolutionizing the biomedical field, predominantly in human implant applications, where these metals widely used as a substitute to or as function restoration of degenerated tissues or organs. Powder metallurgy techniques, in specific the metal injection moulding (MIM) process, have been employed for the fabrication of controlled porous structures used for dental and orthopaedic surgical implants. The porous metal implant allows bony tissue ingrowth on the implant surface, thereby enhancing fixation and recovery. This paper elaborates a systematic classification of various biocompatible metals from the aspect of MIM process as used in medical industries. In this study, three biocompatible metals are reviewed-stainless steels, cobalt alloys, and titanium alloys. The applications of MIM technology in biomedicine focusing primarily on the MIM process setting parameters discussed thoroughly. This paper should be of value to investigators who are interested in state of the art of metal powder metallurgy, particularly the MIM technology for biocompatible metal implant design and development. •Biocompatible metals have been revolutionising the biomedical field.•Metal injection moulding (MIM) process have been utilised for controlled porous structures used for dental and orthopaedic surgical implants.•Systematic classification of various biocompatible metals from the aspect of MIM process as used in medical industries is discussed thoroughly•Three biocompatible metals are reviewed namely stainless steels, cobalt alloys, and titanium alloys.•The applications of MIM technology in biomedicine focusing primarily on the MIM process setting parameters discussed.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2017.05.016</identifier><identifier>PMID: 28575965</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Alloy steels ; Alloys ; Biocompatibility ; Biocompatible Materials ; Biocompatible metals ; Biomedical ; Biomedical materials ; Cobalt ; Cobalt base alloys ; Dental prosthetics ; Fabrication ; Fixation ; Heavy metals ; Humans ; Injection ; Injection molding ; Materials science ; Metal injection moulding ; Metallurgy ; Metals ; Metals - chemistry ; Organs ; Porosity ; Powder ; Powder metallurgy ; Process parameters ; Prostheses and Implants ; Restoration ; Reviews ; Sintering ; Studies ; Surgery ; Surgical implants ; Technology ; Tissues ; Titanium base alloys ; Transplants &amp; implants</subject><ispartof>Materials Science &amp; Engineering C, 2017-09, Vol.78, p.1263-1276</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Sep 1, 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-39270993ec4463256469c5e309a9e2ce33deeaff178571ecec8ee85ba2cb761a3</citedby><cites>FETCH-LOGICAL-c421t-39270993ec4463256469c5e309a9e2ce33deeaff178571ecec8ee85ba2cb761a3</cites><orcidid>0000-0002-1673-5584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0928493117317186$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28575965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamidi, M.F.F.A.</creatorcontrib><creatorcontrib>Harun, W.S.W.</creatorcontrib><creatorcontrib>Samykano, M.</creatorcontrib><creatorcontrib>Ghani, S.A.C.</creatorcontrib><creatorcontrib>Ghazalli, Z.</creatorcontrib><creatorcontrib>Ahmad, F.</creatorcontrib><creatorcontrib>Sulong, A.B.</creatorcontrib><title>A review of biocompatible metal injection moulding process parameters for biomedical applications</title><title>Materials Science &amp; Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>Biocompatible metals have been revolutionizing the biomedical field, predominantly in human implant applications, where these metals widely used as a substitute to or as function restoration of degenerated tissues or organs. Powder metallurgy techniques, in specific the metal injection moulding (MIM) process, have been employed for the fabrication of controlled porous structures used for dental and orthopaedic surgical implants. The porous metal implant allows bony tissue ingrowth on the implant surface, thereby enhancing fixation and recovery. This paper elaborates a systematic classification of various biocompatible metals from the aspect of MIM process as used in medical industries. In this study, three biocompatible metals are reviewed-stainless steels, cobalt alloys, and titanium alloys. The applications of MIM technology in biomedicine focusing primarily on the MIM process setting parameters discussed thoroughly. This paper should be of value to investigators who are interested in state of the art of metal powder metallurgy, particularly the MIM technology for biocompatible metal implant design and development. •Biocompatible metals have been revolutionising the biomedical field.•Metal injection moulding (MIM) process have been utilised for controlled porous structures used for dental and orthopaedic surgical implants.•Systematic classification of various biocompatible metals from the aspect of MIM process as used in medical industries is discussed thoroughly•Three biocompatible metals are reviewed namely stainless steels, cobalt alloys, and titanium alloys.•The applications of MIM technology in biomedicine focusing primarily on the MIM process setting parameters discussed.</description><subject>Alloy steels</subject><subject>Alloys</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials</subject><subject>Biocompatible metals</subject><subject>Biomedical</subject><subject>Biomedical materials</subject><subject>Cobalt</subject><subject>Cobalt base alloys</subject><subject>Dental prosthetics</subject><subject>Fabrication</subject><subject>Fixation</subject><subject>Heavy metals</subject><subject>Humans</subject><subject>Injection</subject><subject>Injection molding</subject><subject>Materials science</subject><subject>Metal injection moulding</subject><subject>Metallurgy</subject><subject>Metals</subject><subject>Metals - chemistry</subject><subject>Organs</subject><subject>Porosity</subject><subject>Powder</subject><subject>Powder metallurgy</subject><subject>Process parameters</subject><subject>Prostheses and Implants</subject><subject>Restoration</subject><subject>Reviews</subject><subject>Sintering</subject><subject>Studies</subject><subject>Surgery</subject><subject>Surgical implants</subject><subject>Technology</subject><subject>Tissues</subject><subject>Titanium base alloys</subject><subject>Transplants &amp; implants</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1q3TAUhEVoSG5u8gJZFEE32djVj2VZkE0IaVoIdNOuhax7HGRsy5Xslrx9jrlJF110JXH4ZhhmCLnmrOSM15_7cszgS8G4Lpkq8XRCdrzRsmDc8A9kx4xoispIfk4ucu4ZqxupxRk5F43SytRqR9wdTfA7wB8aO9qG6OM4uyW0A9ARFjfQMPXglxAnOsZ1OITpmc4pesiZzi45hCBl2sW0qUc4BI8iN88DfjZZviSnnRsyXL29e_Lzy8OP-6_F0_fHb_d3T4WvBF8KaYRmxkjwVVVLoeqqNl6BZMYZEB6kPAC4ruMas3Pw4BuARrVO-FbX3Mk9uTn6YrxfK-TFjiF7GAY3QVyz5YYpLTVD9z359A_axzVNmA6pSopaGcmQEkfKp5hzgs7OKYwuvVjO7DaA7e02gN0GsExZPKHo45v12mIbfyXvjSNwewQAu8Dik80-wOSxuYRF20MM__N_Bf8Ql_0</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Hamidi, M.F.F.A.</creator><creator>Harun, W.S.W.</creator><creator>Samykano, M.</creator><creator>Ghani, S.A.C.</creator><creator>Ghazalli, Z.</creator><creator>Ahmad, F.</creator><creator>Sulong, A.B.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1673-5584</orcidid></search><sort><creationdate>20170901</creationdate><title>A review of biocompatible metal injection moulding process parameters for biomedical applications</title><author>Hamidi, M.F.F.A. ; Harun, W.S.W. ; Samykano, M. ; Ghani, S.A.C. ; Ghazalli, Z. ; Ahmad, F. ; Sulong, A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-39270993ec4463256469c5e309a9e2ce33deeaff178571ecec8ee85ba2cb761a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloy steels</topic><topic>Alloys</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials</topic><topic>Biocompatible metals</topic><topic>Biomedical</topic><topic>Biomedical materials</topic><topic>Cobalt</topic><topic>Cobalt base alloys</topic><topic>Dental prosthetics</topic><topic>Fabrication</topic><topic>Fixation</topic><topic>Heavy metals</topic><topic>Humans</topic><topic>Injection</topic><topic>Injection molding</topic><topic>Materials science</topic><topic>Metal injection moulding</topic><topic>Metallurgy</topic><topic>Metals</topic><topic>Metals - chemistry</topic><topic>Organs</topic><topic>Porosity</topic><topic>Powder</topic><topic>Powder metallurgy</topic><topic>Process parameters</topic><topic>Prostheses and Implants</topic><topic>Restoration</topic><topic>Reviews</topic><topic>Sintering</topic><topic>Studies</topic><topic>Surgery</topic><topic>Surgical implants</topic><topic>Technology</topic><topic>Tissues</topic><topic>Titanium base alloys</topic><topic>Transplants &amp; implants</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamidi, M.F.F.A.</creatorcontrib><creatorcontrib>Harun, W.S.W.</creatorcontrib><creatorcontrib>Samykano, M.</creatorcontrib><creatorcontrib>Ghani, S.A.C.</creatorcontrib><creatorcontrib>Ghazalli, Z.</creatorcontrib><creatorcontrib>Ahmad, F.</creatorcontrib><creatorcontrib>Sulong, A.B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Materials Science &amp; Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamidi, M.F.F.A.</au><au>Harun, W.S.W.</au><au>Samykano, M.</au><au>Ghani, S.A.C.</au><au>Ghazalli, Z.</au><au>Ahmad, F.</au><au>Sulong, A.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review of biocompatible metal injection moulding process parameters for biomedical applications</atitle><jtitle>Materials Science &amp; Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>78</volume><spage>1263</spage><epage>1276</epage><pages>1263-1276</pages><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>Biocompatible metals have been revolutionizing the biomedical field, predominantly in human implant applications, where these metals widely used as a substitute to or as function restoration of degenerated tissues or organs. Powder metallurgy techniques, in specific the metal injection moulding (MIM) process, have been employed for the fabrication of controlled porous structures used for dental and orthopaedic surgical implants. The porous metal implant allows bony tissue ingrowth on the implant surface, thereby enhancing fixation and recovery. This paper elaborates a systematic classification of various biocompatible metals from the aspect of MIM process as used in medical industries. In this study, three biocompatible metals are reviewed-stainless steels, cobalt alloys, and titanium alloys. The applications of MIM technology in biomedicine focusing primarily on the MIM process setting parameters discussed thoroughly. This paper should be of value to investigators who are interested in state of the art of metal powder metallurgy, particularly the MIM technology for biocompatible metal implant design and development. •Biocompatible metals have been revolutionising the biomedical field.•Metal injection moulding (MIM) process have been utilised for controlled porous structures used for dental and orthopaedic surgical implants.•Systematic classification of various biocompatible metals from the aspect of MIM process as used in medical industries is discussed thoroughly•Three biocompatible metals are reviewed namely stainless steels, cobalt alloys, and titanium alloys.•The applications of MIM technology in biomedicine focusing primarily on the MIM process setting parameters discussed.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28575965</pmid><doi>10.1016/j.msec.2017.05.016</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1673-5584</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0928-4931
ispartof Materials Science & Engineering C, 2017-09, Vol.78, p.1263-1276
issn 0928-4931
1873-0191
language eng
recordid cdi_proquest_miscellaneous_1905737046
source MEDLINE; Elsevier ScienceDirect Journals
subjects Alloy steels
Alloys
Biocompatibility
Biocompatible Materials
Biocompatible metals
Biomedical
Biomedical materials
Cobalt
Cobalt base alloys
Dental prosthetics
Fabrication
Fixation
Heavy metals
Humans
Injection
Injection molding
Materials science
Metal injection moulding
Metallurgy
Metals
Metals - chemistry
Organs
Porosity
Powder
Powder metallurgy
Process parameters
Prostheses and Implants
Restoration
Reviews
Sintering
Studies
Surgery
Surgical implants
Technology
Tissues
Titanium base alloys
Transplants & implants
title A review of biocompatible metal injection moulding process parameters for biomedical applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20of%20biocompatible%20metal%20injection%20moulding%20process%20parameters%20for%20biomedical%20applications&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Hamidi,%20M.F.F.A.&rft.date=2017-09-01&rft.volume=78&rft.spage=1263&rft.epage=1276&rft.pages=1263-1276&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2017.05.016&rft_dat=%3Cproquest_cross%3E1905737046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943265930&rft_id=info:pmid/28575965&rft_els_id=S0928493117317186&rfr_iscdi=true