A review of biocompatible metal injection moulding process parameters for biomedical applications

Biocompatible metals have been revolutionizing the biomedical field, predominantly in human implant applications, where these metals widely used as a substitute to or as function restoration of degenerated tissues or organs. Powder metallurgy techniques, in specific the metal injection moulding (MIM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2017-09, Vol.78, p.1263-1276
Hauptverfasser: Hamidi, M.F.F.A., Harun, W.S.W., Samykano, M., Ghani, S.A.C., Ghazalli, Z., Ahmad, F., Sulong, A.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biocompatible metals have been revolutionizing the biomedical field, predominantly in human implant applications, where these metals widely used as a substitute to or as function restoration of degenerated tissues or organs. Powder metallurgy techniques, in specific the metal injection moulding (MIM) process, have been employed for the fabrication of controlled porous structures used for dental and orthopaedic surgical implants. The porous metal implant allows bony tissue ingrowth on the implant surface, thereby enhancing fixation and recovery. This paper elaborates a systematic classification of various biocompatible metals from the aspect of MIM process as used in medical industries. In this study, three biocompatible metals are reviewed-stainless steels, cobalt alloys, and titanium alloys. The applications of MIM technology in biomedicine focusing primarily on the MIM process setting parameters discussed thoroughly. This paper should be of value to investigators who are interested in state of the art of metal powder metallurgy, particularly the MIM technology for biocompatible metal implant design and development. •Biocompatible metals have been revolutionising the biomedical field.•Metal injection moulding (MIM) process have been utilised for controlled porous structures used for dental and orthopaedic surgical implants.•Systematic classification of various biocompatible metals from the aspect of MIM process as used in medical industries is discussed thoroughly•Three biocompatible metals are reviewed namely stainless steels, cobalt alloys, and titanium alloys.•The applications of MIM technology in biomedicine focusing primarily on the MIM process setting parameters discussed.
ISSN:0928-4931
1873-0191
DOI:10.1016/j.msec.2017.05.016