Effects and mechanism of freeze-thawing cycles on the soil N2O fluxes in the temperate semi-arid steppe

High nitrous oxide (N20) emissions during freeze-thawing period (FFP) have been observed in many different ecosystems. However, the knowledge about the dynamic of soil N20 emissions and its main driving mechanism during the freeze-thawing processes in grassland ecosystem is still limited. An in-situ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental sciences (China) 2017-06, Vol.56 (6), p.192-201
Hauptverfasser: Wang, Liqin, Qi, Yuchun, Dong, Yunshe, Peng, Qin, Guo, Shufang, He, Yunlong, Li, Zhaolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High nitrous oxide (N20) emissions during freeze-thawing period (FFP) have been observed in many different ecosystems. However, the knowledge about the dynamic of soil N20 emissions and its main driving mechanism during the freeze-thawing processes in grassland ecosystem is still limited. An in-situ experiment was conducted during the FTP on the sites with 0 and 15% surplus of the average rainfall and two levels of N addition (0,10 g N/(m2-year)) during growing season (marked as WON0, WISN0, WONI0, WISNI0, respectively) to explore the effects of water and N background on soil N20 emissions during FTPs and the relationship between soil N20 emissions and environmental factors. The results indicated that water and N treatments conducted during growing season did not show significant effect on the N20 effluxes of FTP, but the soil mineral N contents of WONI0 treatment were significantly higher than those of WON0, WI5N0, WI5NI0 treatments (p 〈 0.05). The soil PLFA concentrations of microbial groups monitored during 2015 spring freeze-thawing period (2015S-FTP) were lower than those during winter freeze-thawing period of 2014 (2014W-FTP), while cumulative soil N20 emissions of 2015S-FTP were higher than those of 2014W-FFP. The correlations between soil N20 effluxes and most of the measured environmental factors were insignificant, multiple stepwise regression analysis indicated that the soil temperature, soil NH$-N content and air temperature were the major environmental factors which significantly influenced the N20 effluxes during 2014W-FTP, and air temperature and son water content were the significant influencing factors during 2015S-FTP.
ISSN:1001-0742
1878-7320
DOI:10.1016/j.jes.2016.09.013