Fecal Methanogens and Vertebrate Evolution
It has been assumed that the feeding habits of vertebrates predispose the variety of intestinal differentiations and the composition of the microbial biota living in their intestinal tracts. Consequently, the presence of methanogenic bacteria in the various differentiations of the large intestine an...
Gespeichert in:
Veröffentlicht in: | Evolution 1996-04, Vol.50 (2), p.559-572 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It has been assumed that the feeding habits of vertebrates predispose the variety of intestinal differentiations and the composition of the microbial biota living in their intestinal tracts. Consequently, the presence of methanogenic bacteria in the various differentiations of the large intestine and the foregut of herbivorous vertebrates had been attributed primarily to the existence of anaerobic habitats and the availability of carbon dioxide and hydrogen originating from the fermentative microbial digestion of plant-based diets. However, Australian ratites, many murids, and several New World primates lack methanogens, despite their intestinal differentiations and their vegetarian feeding habits. Crocodiles, giant snakes, aardvarks, and ant-eaters on the other hand release significant amounts of methane. A determination of methane emissions by 253 vertebrate species confirmed that competence for intestinal methanogenic bacteria is shared by related species and higher taxa, irrespective of different feeding habits. In "methanogenic" branches of the evolutionary tree, a variety of differentiations of the large intestine evolved and, in some cases, differentiations of the foregut. In contrast, the lack of competence for methanogens in chiropterans/insectivores and carnivores apparently has precluded the evolution of specialized fermenting differentiations of the digestive tract. Our observations reveal that the presence of intestinal methanogenic bacteria is under phylogenetic rather than dietary control: competence for intestinal methanogenic bacteria is a plesiomorphic (primitive-shared) character among reptiles, birds, and mammals. This competence for methanogenic bacteria has been crucial for the evolution of the amniotes. |
---|---|
ISSN: | 0014-3820 1558-5646 |
DOI: | 10.1111/j.1558-5646.1996.tb03868.x |