The evolution of resistance to herbivory in Ipomoea purpurea. II. Natural selection by insects and costs of resistance

An important component of the process of coevolution between plants and their insect herbivores is the imposition of selection on plants by insects. Although such selection has been inferred from indirect evidence, little direct evidence for it exists. One goal of this study was to seek direct evide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolution 1989-05, Vol.43 (3), p.573-585
Hauptverfasser: Simms, E.L, Rauscher, M.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An important component of the process of coevolution between plants and their insect herbivores is the imposition of selection on plants by insects. Although such selection has been inferred from indirect evidence, little direct evidence for it exists. One goal of this study was to seek direct evidence by determining, for a single plant-herbivore system, whether insect herbivores impose selection on their host plants. A second goal was to determine whether costs are associated with genotypes that confer resistance to herbivores, as has been commonly postulated. The annual morning glory, Ipomoea purpurea, exhibits genetic variation in resistance to four different types of insects. For three of these types, most of the genetic variation is additive. Removal of insect herbivores increased the number of seeds produced by I. purpurea by 20% and eliminated additive genetic variation for seed number (fitness). This result implies that herbivores impose selection on some trait(s) of their host plants. Coupled with selection for decreased damage by corn earworms, as revealed by a negative additive genetic covariance between damage and fitness, this result suggests that insect herbivores impose selection on resistance to corn earworms in I. purpurea. Two types of cost of resistance to herbivores were sought in I. purpurea: 1) internal trade-offs in allocation of resources and 2) ecological trade-offs between resistances to different insects. No costs of either type were detected. This result suggests that cost-benefit arguments that attempt to predict the evolution of levels of resistance to herbivores are not applicable to I. purpurea.
ISSN:0014-3820
1558-5646
DOI:10.1111/j.1558-5646.1989.tb04253.x