Europium-Labeled Synthetic C3a Protein as a Novel Fluorescent Probe for Human Complement C3a Receptor

Measuring ligand affinity for a G protein-coupled receptor is often a crucial step in drug discovery. It has been traditionally determined by binding putative new ligands in competition with native ligand labeled with a radioisotope of finite lifetime. Competing instead with a lanthanide-based fluor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2017-06, Vol.28 (6), p.1669-1676
Hauptverfasser: Dantas de Araujo, Aline, Wu, Chongyang, Wu, Kai-Chen, Reid, Robert C, Durek, Thomas, Lim, Junxian, Fairlie, David P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Measuring ligand affinity for a G protein-coupled receptor is often a crucial step in drug discovery. It has been traditionally determined by binding putative new ligands in competition with native ligand labeled with a radioisotope of finite lifetime. Competing instead with a lanthanide-based fluorescent ligand is more attractive due to greater longevity, stability, and safety. Here, we have chemically synthesized the 77 residue human C3a protein and conjugated its N-terminus to europium diethylenetriaminepentaacetate to produce a novel fluorescent protein (Eu–DTPA–hC3a). Time-resolved fluorescence analysis has demonstrated that Eu–DTPA–hC3a binds selectively to its cognate G protein-coupled receptor C3aR with full agonist activity and similar potency and selectivity as native C3a in inducing calcium mobilization and phosphorylation of extracellular signal-regulated kinases in HEK293 cells that stably expressed C3aR. Time-resolved fluorescence analysis for saturation and competitive binding gave a dissociation constant (K d) of 8.7 ± 1.4 nM for Eu–DTPA–hC3a and binding affinities for hC3a (pK i of 8.6 ± 0.2 and K i of 2.5 nM) and C3aR ligands TR16 (pK i of 6.8 ± 0.1 and K i of 138 nM), BR103 (pK i of 6.7 ± 0.1 and K i of 185 nM), BR111 (pK i of 6.3 ± 0.2 and K i of 544 nM) and SB290157 (pK i of 6.3 ± 0.1 and K i of 517 nM) via displacement of Eu–DTPA–hC3a from hC3aR. The macromolecular conjugate Eu–DTPA–hC3a is a novel nonradioactive probe suitable for studying ligand–C3aR interactions with potential value in accelerating drug development for human C3aR in physiology and disease.
ISSN:1043-1802
1520-4812
DOI:10.1021/acs.bioconjchem.7b00132