Impact of the lithosphere on dynamic topography: Insights from analogue modeling

Density anomalies beneath the lithosphere are expected to generate dynamic topography at the Earth's surface due to the induced mantle flow stresses which scale linearly with density anomalies, while the viscosity of the upper mantle is expected to control uplift rates. However, limited attenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2017-03, Vol.44 (6), p.2693-2702
Hauptverfasser: Sembroni, Andrea, Kiraly, Agnes, Faccenna, Claudio, Funiciello, Francesca, Becker, Thorsten W., Globig, Jan, Fernandez, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Density anomalies beneath the lithosphere are expected to generate dynamic topography at the Earth's surface due to the induced mantle flow stresses which scale linearly with density anomalies, while the viscosity of the upper mantle is expected to control uplift rates. However, limited attention has been given to the role of the lithosphere. Here we present results from analogue modeling of the interactions between a density anomaly rising in the mantle and the lithosphere in a Newtonian system. We find that, for instabilities with wavelengths of the same order of magnitude as lithosphere thickness, the uplift rate and the geometry of the surface bulge are inversely correlated to the lithosphere thickness. We also show that a layered lithosphere may modulate the topographic signal. With respect to previous approaches our models represent a novel attempt to unravel the way normal stresses generated by mantle flow are transmitted through a rheologically stratified lithosphere and the resulting topographic signal. Key Points We perform experiments to investigate the role of the lithosphere on dynamic topography We study the topographic signal of a rising mantle anomaly on the lithosphere Surface uplift and bulge aspect ratio are inversely correlated to lithosphere thickness
ISSN:0094-8276
1944-8007
DOI:10.1002/2017GL072668