Attosecond band-gap dynamics in silicon

Electron transfer from valence to conduction band states in semiconductors is the basis of modern electronics. Here, attosecond extreme ultraviolet (XUV) spectroscopy is used to resolve this process in silicon in real time. Electrons injected into the conduction band by few-cycle laser pulses alter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2014-12, Vol.346 (6215), p.1348-1352
Hauptverfasser: Schultze, Martin, Ramasesha, Krupa, Pemmaraju, C.D., Sato, S.A., Whitmore, D., Gandman, A., Prell, James S., Borja, L. J., Prendergast, D., Yabana, K., Neumark, Daniel M., Leone, Stephen R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electron transfer from valence to conduction band states in semiconductors is the basis of modern electronics. Here, attosecond extreme ultraviolet (XUV) spectroscopy is used to resolve this process in silicon in real time. Electrons injected into the conduction band by few-cycle laser pulses alter the silicon XUV absorption spectrum in sharp steps synchronized with the laser electric field oscillations. The observed ∼450-attosecond step rise time provides an upper limit for the carrier-induced band-gap reduction and the electron-electron scattering time in the conduction band. This electronic response is separated from the subsequent band-gap modifications due to lattice motion, which occurs on a time scale of 60 ± 10 femtoseconds, characteristic of the fastest optical phonon. Quantum dynamical simulations interpret the carrier injection step as light-field–induced electron tunneling.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1260311