A Hypergeometric Basis for the Alpert Multiresolution Analysis

We construct an explicit orthonormal basis of piecewise _{i+1}F_{i}$ hypergeometric polynomials for the Alpert multiresolution analysis. The Fourier transform of each basis function is written in terms of _2F_3$ hypergeometric functions. Moreover, the entries in the matrix equation connecting the wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2015-01, Vol.47 (1), p.654-668
Hauptverfasser: Geronimo, Jeffrey S., Iliev, Plamen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 668
container_issue 1
container_start_page 654
container_title SIAM journal on mathematical analysis
container_volume 47
creator Geronimo, Jeffrey S.
Iliev, Plamen
description We construct an explicit orthonormal basis of piecewise _{i+1}F_{i}$ hypergeometric polynomials for the Alpert multiresolution analysis. The Fourier transform of each basis function is written in terms of _2F_3$ hypergeometric functions. Moreover, the entries in the matrix equation connecting the wavelets with the scaling functions are shown to be balanced _4 F_3$ hypergeometric functions evaluated at $1$, which allows us to compute them recursively via three-term recurrence relations. The above results lead to a variety of new interesting identities and orthogonality relations reminiscent of classical identities of higher-order hypergeometric functions and orthogonality relations of Wigner 6j-symbols.
doi_str_mv 10.1137/140963923
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904244710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904244710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-7756383a20f4da35e25d4f83573fcf4a824874deccabfd10d6e07fa207d227aa3</originalsourceid><addsrcrecordid>eNo90DFPwzAUBGALgUQpDPwDjzAE3rOdOFmQQlUoUhELzJFxniHIrYvtDP33BBUx3XCfbjjGLhFuEKW-RQVNJRshj9gMoSkLjaU6ZjMAWRWoEE7ZWUpfAFipBmbsruWr_Y7iB4UN5ThYfm_SkLgLkedP4q2fysyfR5-HSCn4MQ9hy9ut8fvJnbMTZ3yii7-cs7eH5etiVaxfHp8W7bqwotG50LqsZC2NAKd6I0sSZa9cLUstnXXK1ELVWvVkrXl3PUJfEWg3cd0LoY2Rc3Z12N3F8D1Syt1mSJa8N1sKY-qwASWU0ggTvT5QG0NKkVy3i8PGxH2H0P1-1P1_JH8ARLBYNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904244710</pqid></control><display><type>article</type><title>A Hypergeometric Basis for the Alpert Multiresolution Analysis</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Geronimo, Jeffrey S. ; Iliev, Plamen</creator><creatorcontrib>Geronimo, Jeffrey S. ; Iliev, Plamen</creatorcontrib><description>We construct an explicit orthonormal basis of piecewise _{i+1}F_{i}$ hypergeometric polynomials for the Alpert multiresolution analysis. The Fourier transform of each basis function is written in terms of _2F_3$ hypergeometric functions. Moreover, the entries in the matrix equation connecting the wavelets with the scaling functions are shown to be balanced _4 F_3$ hypergeometric functions evaluated at $1$, which allows us to compute them recursively via three-term recurrence relations. The above results lead to a variety of new interesting identities and orthogonality relations reminiscent of classical identities of higher-order hypergeometric functions and orthogonality relations of Wigner 6j-symbols.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/140963923</identifier><language>eng</language><subject>Fourier transforms ; Hypergeometric functions ; Mathematical analysis ; Matrices (mathematics) ; Multiresolution analysis ; Orthogonality ; Polynomials ; Wavelet analysis</subject><ispartof>SIAM journal on mathematical analysis, 2015-01, Vol.47 (1), p.654-668</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-7756383a20f4da35e25d4f83573fcf4a824874deccabfd10d6e07fa207d227aa3</citedby><cites>FETCH-LOGICAL-c297t-7756383a20f4da35e25d4f83573fcf4a824874deccabfd10d6e07fa207d227aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,3174,27911,27912</link.rule.ids></links><search><creatorcontrib>Geronimo, Jeffrey S.</creatorcontrib><creatorcontrib>Iliev, Plamen</creatorcontrib><title>A Hypergeometric Basis for the Alpert Multiresolution Analysis</title><title>SIAM journal on mathematical analysis</title><description>We construct an explicit orthonormal basis of piecewise _{i+1}F_{i}$ hypergeometric polynomials for the Alpert multiresolution analysis. The Fourier transform of each basis function is written in terms of _2F_3$ hypergeometric functions. Moreover, the entries in the matrix equation connecting the wavelets with the scaling functions are shown to be balanced _4 F_3$ hypergeometric functions evaluated at $1$, which allows us to compute them recursively via three-term recurrence relations. The above results lead to a variety of new interesting identities and orthogonality relations reminiscent of classical identities of higher-order hypergeometric functions and orthogonality relations of Wigner 6j-symbols.</description><subject>Fourier transforms</subject><subject>Hypergeometric functions</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Multiresolution analysis</subject><subject>Orthogonality</subject><subject>Polynomials</subject><subject>Wavelet analysis</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo90DFPwzAUBGALgUQpDPwDjzAE3rOdOFmQQlUoUhELzJFxniHIrYvtDP33BBUx3XCfbjjGLhFuEKW-RQVNJRshj9gMoSkLjaU6ZjMAWRWoEE7ZWUpfAFipBmbsruWr_Y7iB4UN5ThYfm_SkLgLkedP4q2fysyfR5-HSCn4MQ9hy9ut8fvJnbMTZ3yii7-cs7eH5etiVaxfHp8W7bqwotG50LqsZC2NAKd6I0sSZa9cLUstnXXK1ELVWvVkrXl3PUJfEWg3cd0LoY2Rc3Z12N3F8D1Syt1mSJa8N1sKY-qwASWU0ggTvT5QG0NKkVy3i8PGxH2H0P1-1P1_JH8ARLBYNA</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Geronimo, Jeffrey S.</creator><creator>Iliev, Plamen</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201501</creationdate><title>A Hypergeometric Basis for the Alpert Multiresolution Analysis</title><author>Geronimo, Jeffrey S. ; Iliev, Plamen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-7756383a20f4da35e25d4f83573fcf4a824874deccabfd10d6e07fa207d227aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Fourier transforms</topic><topic>Hypergeometric functions</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Multiresolution analysis</topic><topic>Orthogonality</topic><topic>Polynomials</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geronimo, Jeffrey S.</creatorcontrib><creatorcontrib>Iliev, Plamen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geronimo, Jeffrey S.</au><au>Iliev, Plamen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hypergeometric Basis for the Alpert Multiresolution Analysis</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2015-01</date><risdate>2015</risdate><volume>47</volume><issue>1</issue><spage>654</spage><epage>668</epage><pages>654-668</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>We construct an explicit orthonormal basis of piecewise _{i+1}F_{i}$ hypergeometric polynomials for the Alpert multiresolution analysis. The Fourier transform of each basis function is written in terms of _2F_3$ hypergeometric functions. Moreover, the entries in the matrix equation connecting the wavelets with the scaling functions are shown to be balanced _4 F_3$ hypergeometric functions evaluated at $1$, which allows us to compute them recursively via three-term recurrence relations. The above results lead to a variety of new interesting identities and orthogonality relations reminiscent of classical identities of higher-order hypergeometric functions and orthogonality relations of Wigner 6j-symbols.</abstract><doi>10.1137/140963923</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1410
ispartof SIAM journal on mathematical analysis, 2015-01, Vol.47 (1), p.654-668
issn 0036-1410
1095-7154
language eng
recordid cdi_proquest_miscellaneous_1904244710
source LOCUS - SIAM's Online Journal Archive
subjects Fourier transforms
Hypergeometric functions
Mathematical analysis
Matrices (mathematics)
Multiresolution analysis
Orthogonality
Polynomials
Wavelet analysis
title A Hypergeometric Basis for the Alpert Multiresolution Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hypergeometric%20Basis%20for%20the%20Alpert%20Multiresolution%20Analysis&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=Geronimo,%20Jeffrey%20S.&rft.date=2015-01&rft.volume=47&rft.issue=1&rft.spage=654&rft.epage=668&rft.pages=654-668&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/140963923&rft_dat=%3Cproquest_cross%3E1904244710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904244710&rft_id=info:pmid/&rfr_iscdi=true