A Hypergeometric Basis for the Alpert Multiresolution Analysis

We construct an explicit orthonormal basis of piecewise _{i+1}F_{i}$ hypergeometric polynomials for the Alpert multiresolution analysis. The Fourier transform of each basis function is written in terms of _2F_3$ hypergeometric functions. Moreover, the entries in the matrix equation connecting the wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2015-01, Vol.47 (1), p.654-668
Hauptverfasser: Geronimo, Jeffrey S., Iliev, Plamen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct an explicit orthonormal basis of piecewise _{i+1}F_{i}$ hypergeometric polynomials for the Alpert multiresolution analysis. The Fourier transform of each basis function is written in terms of _2F_3$ hypergeometric functions. Moreover, the entries in the matrix equation connecting the wavelets with the scaling functions are shown to be balanced _4 F_3$ hypergeometric functions evaluated at $1$, which allows us to compute them recursively via three-term recurrence relations. The above results lead to a variety of new interesting identities and orthogonality relations reminiscent of classical identities of higher-order hypergeometric functions and orthogonality relations of Wigner 6j-symbols.
ISSN:0036-1410
1095-7154
DOI:10.1137/140963923