A Hypergeometric Basis for the Alpert Multiresolution Analysis
We construct an explicit orthonormal basis of piecewise _{i+1}F_{i}$ hypergeometric polynomials for the Alpert multiresolution analysis. The Fourier transform of each basis function is written in terms of _2F_3$ hypergeometric functions. Moreover, the entries in the matrix equation connecting the wa...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2015-01, Vol.47 (1), p.654-668 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct an explicit orthonormal basis of piecewise _{i+1}F_{i}$ hypergeometric polynomials for the Alpert multiresolution analysis. The Fourier transform of each basis function is written in terms of _2F_3$ hypergeometric functions. Moreover, the entries in the matrix equation connecting the wavelets with the scaling functions are shown to be balanced _4 F_3$ hypergeometric functions evaluated at $1$, which allows us to compute them recursively via three-term recurrence relations. The above results lead to a variety of new interesting identities and orthogonality relations reminiscent of classical identities of higher-order hypergeometric functions and orthogonality relations of Wigner 6j-symbols. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/140963923 |