Continuous derivations on algebras of locally measurable operators are inner

We prove that every derivation acting on the *‐algebra LS(M) of all locally measurable operators affiliated with a von Neumann algebra M is necessarily inner provided that it is continuous with respect to the local measure topology. In particular, every derivation on LS(M) is inner provided that M i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2014-07, Vol.109 (1), p.65-89
Hauptverfasser: Ber, A. F., Chilin, V. I., Sukochev, F. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that every derivation acting on the *‐algebra LS(M) of all locally measurable operators affiliated with a von Neumann algebra M is necessarily inner provided that it is continuous with respect to the local measure topology. In particular, every derivation on LS(M) is inner provided that M is a properly infinite von Neumann algebra. Furthermore, any derivation on an arbitrary von Neumann algebra M with values in a Banach M‐bimodule of locally measurable operators is inner.
ISSN:0024-6115
1460-244X
DOI:10.1112/plms/pdt070