Deviation of ergodic averages for substitution dynamical systems with eigenvalues of modulus 1
Deviation of ergodic sums is studied for substitution dynamical systems with a matrix that admits eigenvalues of modulus 1. The functions γ we consider are the corresponding eigenfunctions. In Theorem 1.1, we prove that the limit inferior of the ergodic sums (n,γ(x0)+⋯+γ(xn−1))n∈N is bounded for eve...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2014-08, Vol.109 (2), p.483-522 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deviation of ergodic sums is studied for substitution dynamical systems with a matrix that admits eigenvalues of modulus 1. The functions γ we consider are the corresponding eigenfunctions. In Theorem 1.1, we prove that the limit inferior of the ergodic sums (n,γ(x0)+⋯+γ(xn−1))n∈N is bounded for every point x in the phase space. In Theorem 1.2, we prove existence of limit distributions along certain exponential subsequences of times for substitutions of constant length. Under additional assumptions, we prove that ergodic integrals satisfy the Central Limit Theorem (Theorems 1.3 and 1.10). |
---|---|
ISSN: | 0024-6115 1460-244X |
DOI: | 10.1112/plms/pdu009 |