Nitrogen/sulfur-doping of graphene with cysteine as a heteroatom source for oxygen reduction electrocatalysis

[Display omitted] Heteroatom-doped graphene have encouraged intensive research as promising metal-free oxygen reduction reaction (ORR) electrocatalysts but the correlation between the precursor material and final ORR activity remains unclear. In this work a serial of nitrogen/sulfur (N/S)-doped grap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2017-11, Vol.505, p.32-37
Hauptverfasser: Zhang, Huanhuan, Niu, Yanli, Hu, Weihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Heteroatom-doped graphene have encouraged intensive research as promising metal-free oxygen reduction reaction (ORR) electrocatalysts but the correlation between the precursor material and final ORR activity remains unclear. In this work a serial of nitrogen/sulfur (N/S)-doped graphene catalysts were synthesized by modifying graphene oxide (GO) with cysteine as a N/S source and sequential thermal annealing. It is disclosed that the cysteine-GO reaction time shows a significant influence on the ORR activity of N/S-doped graphene. A unique process of oxidation-induced in situ disulfide formation is further found to be involved in the synthesis of optimal N/S-doped graphene, which displays ORR activity superior to commercial Pt/C in alkaline media. This work suggests that the heteroatom source itself and careful optimization of reaction conditions are critical to obtain high performance doped-graphene electrocatalyst.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2017.05.069