Development of a novel bioactive glass suitable for osteosarcoma-related bone grafts

In this study, zinc borate-based glasses with increasing gallium content (0, 2.5, 5, 10, and 15 wt % Ga) were synthesized and their effect on the viability and proliferation of preosteoblasts and osteosarcoma cancer cells were investigated. Methyl thiazolyl tetrazolium (MTT) cell viability assays us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2018-04, Vol.106 (3), p.1186-1193
Hauptverfasser: Rahimnejad Yazdi, Alireza, Torkan, Lawrence, Waldman, Stephen D, Towler, Mark R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, zinc borate-based glasses with increasing gallium content (0, 2.5, 5, 10, and 15 wt % Ga) were synthesized and their effect on the viability and proliferation of preosteoblasts and osteosarcoma cancer cells were investigated. Methyl thiazolyl tetrazolium (MTT) cell viability assays using glass degradation extracts revealed that the extracts from glasses with lower Ga contents could enhance the viability of preosteoblasts, while extracts from the glass composition with 15 wt % Ga caused statistically significant reduction of their viability. MTT cell viability assays using the extracts and osteosarcoma cells showed that only extracts from the glass composition with 5 wt % Ga (G3) did not cause a statistically significant increase in the viability of cancer cells for all degradation periods (1 day, 7 days, and 28 days). G3 was selected as the most suitable composition for the osteosarcoma-related graft operations as it could improve the viability of preosteoblasts without increasing the viability of cancer cells. The viability of preosteoblasts and osteosarcoma cells in contact with the glass powders were also investigated using MTT assays. The results showed that the G3 powders could enhance the viability of preosteoblasts while decreasing the viability of osteosarcoma cells. Finally, live/dead assays revealed that suppression of proliferation appeared to be the mechanism causing the observed reductions in the viability of osteosarcoma cells exposed to G3 powders. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1186-1193, 2018.
ISSN:1552-4973
1552-4981
DOI:10.1002/jbm.b.33930