Exact Single-Electron Approach to the Dynamics of Molecules in Strong Laser Fields

We present an exact single-electron picture that describes the correlated electron dynamics in strong laser fields. Our approach is based on the factorization of the electronic wave function as a product of a marginal and a conditional amplitude. The marginal amplitude, which depends only on one ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-04, Vol.118 (16), p.163202-163202, Article 163202
Hauptverfasser: Schild, Axel, Gross, E K U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an exact single-electron picture that describes the correlated electron dynamics in strong laser fields. Our approach is based on the factorization of the electronic wave function as a product of a marginal and a conditional amplitude. The marginal amplitude, which depends only on one electronic coordinate and yields the exact one-electron density and current density, obeys a time-dependent Schrödinger equation with an effective time-dependent potential. The exact equations are used to derive an approximation that is a step towards general and feasible ab initio single-electron calculations for molecules. The derivation also sheds new light on the usual interpretation of the single-active electron approximation. From the study of model systems, we find that the exact and approximate single-electron potentials for processes with negligible two-electron ionization lead to qualitatively similar dynamics, but that the ionization barrier in the exact single-electron potential may be explicitly time dependent.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.118.163202