Subradiance via Entanglement in Atoms with Several Independent Decay Channels

Spontaneous emission of atoms in free space is modified by the presence of other atoms in close vicinity inducing collective super- and subradiance. For two nearby atoms with a single decay channel the entangled antisymmetric superposition state of the two single excited states will not decay sponta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-04, Vol.118 (14), p.143602, Article 143602
Hauptverfasser: Hebenstreit, Martin, Kraus, Barbara, Ostermann, Laurin, Ritsch, Helmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spontaneous emission of atoms in free space is modified by the presence of other atoms in close vicinity inducing collective super- and subradiance. For two nearby atoms with a single decay channel the entangled antisymmetric superposition state of the two single excited states will not decay spontaneously. No such excited two-atom dark state exists, if the excited state has two independent optical decay channels of different frequencies or polarizations. However, we show that for an excited atomic state with N-1 independent spontaneous decay channels one can find a highly entangled N-particle dark state, which completely decouples from the vacuum radiation field. It does not decay spontaneously, nor will it absorb resonant laser light. Mathematically, we see that this state is the only such state orthogonal to the subspace spanned by the atomic ground states. Moreover, by means of generic numerical examples we demonstrate that the subradiant behavior largely survives at finite atomic distances including dipole-dipole interactions.
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.118.143602