Thermal Disproportionation of Oxo‐Functionalized Graphene

Graphene production by wet chemistry is an ongoing scientific challenge. Controlled oxidation of graphite introduces oxo functional groups; this material can be processed and converted back to graphene by reductive defunctionalization. Although thermal processing yields conductive carbon, a ruptured...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2017-07, Vol.56 (31), p.9222-9225
Hauptverfasser: Grote, Fabian, Gruber, Christoph, Börrnert, Felix, Kaiser, Ute, Eigler, Siegfried
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene production by wet chemistry is an ongoing scientific challenge. Controlled oxidation of graphite introduces oxo functional groups; this material can be processed and converted back to graphene by reductive defunctionalization. Although thermal processing yields conductive carbon, a ruptured and undefined carbon lattice is produced as a consequence of CO2 formation. This thermal process is not understood, but it is believed that graphene is not accessible. Here, we thermally process oxo‐functionalized graphene (oxo‐G) with a low (4–6 %) and high degree of functionalization (50–60 %) and find on the basis of Raman spectroscopy and transmission electron microscopy performed at atomic resolution (HRTEM) that thermal processing leads predominantly to an intact carbon framework with a density of lattice defects as low as 0.8 %. We attribute this finding to reorganization effects of oxo groups. This finding holds out the prospect of thermal graphene formation from oxo‐G derivatives. Losing O's: Graphene can be prepared by heating oxo‐functionalized graphene. Defunctionalization resulting in graphene formation (path I) is the dominant process.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201704419