A bag-of-regions representation for video classification
A bag-of-regions (BoR) representation of a video sequence is a spatio-temporal tessellation for use in high-level applications such as video classifications and action recognitions. We obtain a BoR representation of a video sequence by extracting regions that exist in the majority of its frames and...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2016-03, Vol.75 (5), p.2453-2472 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A bag-of-regions (BoR) representation of a video sequence is a spatio-temporal tessellation for use in high-level applications such as video classifications and action recognitions. We obtain a BoR representation of a video sequence by extracting regions that exist in the majority of its frames and largely correspond to a single object. First, the significant regions are obtained using unsupervised frame segmentation based on the JSEG method. A tracking algorithm for splitting and merging the regions is then used to generate a relational graph of all regions in the segmented sequence. Finally, we perform a connectivity analysis on this graph to select the most significant regions, which are then used to create a high-level representation of the video sequence. We evaluated our representation using a SVM classifier for the video classification and achieved about 85 % average precision using the UCF50 dataset. |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-015-2876-y |