Batch Image Encryption Using Generated Deep Features Based on Stacked Autoencoder Network

Chaos-based algorithms have been widely adopted to encrypt images. But previous chaos-based encryption schemes are not secure enough for batch image encryption, for images are usually encrypted using a single sequence. Once an encrypted image is cracked, all the others will be vulnerable. In this pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2017-01, Vol.2017 (2017), p.1-12
Hauptverfasser: Pu, Changjiu, Xu, Xiaofei, Wang, Jingyuan, Hu, Fei, Peng, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chaos-based algorithms have been widely adopted to encrypt images. But previous chaos-based encryption schemes are not secure enough for batch image encryption, for images are usually encrypted using a single sequence. Once an encrypted image is cracked, all the others will be vulnerable. In this paper, we proposed a batch image encryption scheme into which a stacked autoencoder (SAE) network was introduced to generate two chaotic matrices; then one set is used to produce a total shuffling matrix to shuffle the pixel positions on each plain image, and another produces a series of independent sequences of which each is used to confuse the relationship between the permutated image and the encrypted image. The scheme is efficient because of the advantages of parallel computing of SAE, which leads to a significant reduction in the run-time complexity; in addition, the hybrid application of shuffling and confusing enhances the encryption effect. To evaluate the efficiency of our scheme, we compared it with the prevalent “logistic map,” and outperformance was achieved in running time estimation. The experimental results and analysis show that our scheme has good encryption effect and is able to resist brute-force attack, statistical attack, and differential attack.
ISSN:1024-123X
1563-5147
DOI:10.1155/2017/3675459