Regularity of almost minimizers with free boundary

In this paper we study the local regularity of almost minimizers of the functional J ( u ) = ∫ Ω | ∇ u ( x ) | 2 + q + 2 ( x ) χ { u > 0 } ( x ) + q - 2 ( x ) χ { u < 0 } ( x ) where q ± ∈ L ∞ ( Ω ) . Almost minimizers do not satisfy a PDE or a monotonicity formula like minimizers do (see Alt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2015-09, Vol.54 (1), p.455-524
Hauptverfasser: David, G., Toro, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 524
container_issue 1
container_start_page 455
container_title Calculus of variations and partial differential equations
container_volume 54
creator David, G.
Toro, T.
description In this paper we study the local regularity of almost minimizers of the functional J ( u ) = ∫ Ω | ∇ u ( x ) | 2 + q + 2 ( x ) χ { u > 0 } ( x ) + q - 2 ( x ) χ { u < 0 } ( x ) where q ± ∈ L ∞ ( Ω ) . Almost minimizers do not satisfy a PDE or a monotonicity formula like minimizers do (see Alt and Caffarelli, in J Reine Angew Math, 325:105–144, 1981 ; Alt et al., in Trans Am Math Soc 282:431–461, 1984 ; Caffarelli et al., in Global energy minimizers for free boundary problems and full regularity in three dimensions. In: Non-compact Problems at the Intersection of Geometry, Analysis, and Topology, vol. 8397. Contemporary Mathematics, vol. 350. American Mathematical Society, Providence, 2004 ; DeSilva and Jerison, in J Reine Angew Math 635:121, 2009 ). Nevertheless we succeed in proving that they are locally Lipschitz, which is the optimal regularity for minimizers.
doi_str_mv 10.1007/s00526-014-0792-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904217321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904217321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-ba33d02772548d43286d120b195d482661d08648d5d8a2ce0d8944b512eb4d033</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAeyyZGOY8SNxlqgCilQJCcHacmKnuMqj2IlQ-_W4CmtWs5h7R2cOIbcI9whQPEQAyXIKKCgUJaPHM7JAwRkFxeU5WUApBGV5Xl6Sqxh3ACgVEwvC3t12ak3w4yEbmsy03RDHrPO97_zRhZj9-PEra4JzWTVMvTXhcE0uGtNGd_M3l-Tz-eljtaabt5fX1eOG1rzEkVaGcwusKJgUyiYUlVtkUGEprVAJBS2oPK2kVYbVDqxKjJVE5iphgfMluZvv7sPwPbk46s7H2rWt6d0wRY0lCIYFZ5iiOEfrMMQYXKP3wXeJVSPokx89-9HJjz750cfUYXMnpmy_dUHvhin06aN_Sr8SE2cu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904217321</pqid></control><display><type>article</type><title>Regularity of almost minimizers with free boundary</title><source>SpringerLink Journals - AutoHoldings</source><creator>David, G. ; Toro, T.</creator><creatorcontrib>David, G. ; Toro, T.</creatorcontrib><description>In this paper we study the local regularity of almost minimizers of the functional J ( u ) = ∫ Ω | ∇ u ( x ) | 2 + q + 2 ( x ) χ { u &gt; 0 } ( x ) + q - 2 ( x ) χ { u &lt; 0 } ( x ) where q ± ∈ L ∞ ( Ω ) . Almost minimizers do not satisfy a PDE or a monotonicity formula like minimizers do (see Alt and Caffarelli, in J Reine Angew Math, 325:105–144, 1981 ; Alt et al., in Trans Am Math Soc 282:431–461, 1984 ; Caffarelli et al., in Global energy minimizers for free boundary problems and full regularity in three dimensions. In: Non-compact Problems at the Intersection of Geometry, Analysis, and Topology, vol. 8397. Contemporary Mathematics, vol. 350. American Mathematical Society, Providence, 2004 ; DeSilva and Jerison, in J Reine Angew Math 635:121, 2009 ). Nevertheless we succeed in proving that they are locally Lipschitz, which is the optimal regularity for minimizers.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-014-0792-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of variations ; Calculus of Variations and Optimal Control; Optimization ; Control ; Formulas (mathematics) ; Free boundaries ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Optimization ; Partial differential equations ; Regularity ; Systems Theory ; Texts ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2015-09, Vol.54 (1), p.455-524</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-ba33d02772548d43286d120b195d482661d08648d5d8a2ce0d8944b512eb4d033</citedby><cites>FETCH-LOGICAL-c391t-ba33d02772548d43286d120b195d482661d08648d5d8a2ce0d8944b512eb4d033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-014-0792-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-014-0792-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>David, G.</creatorcontrib><creatorcontrib>Toro, T.</creatorcontrib><title>Regularity of almost minimizers with free boundary</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>In this paper we study the local regularity of almost minimizers of the functional J ( u ) = ∫ Ω | ∇ u ( x ) | 2 + q + 2 ( x ) χ { u &gt; 0 } ( x ) + q - 2 ( x ) χ { u &lt; 0 } ( x ) where q ± ∈ L ∞ ( Ω ) . Almost minimizers do not satisfy a PDE or a monotonicity formula like minimizers do (see Alt and Caffarelli, in J Reine Angew Math, 325:105–144, 1981 ; Alt et al., in Trans Am Math Soc 282:431–461, 1984 ; Caffarelli et al., in Global energy minimizers for free boundary problems and full regularity in three dimensions. In: Non-compact Problems at the Intersection of Geometry, Analysis, and Topology, vol. 8397. Contemporary Mathematics, vol. 350. American Mathematical Society, Providence, 2004 ; DeSilva and Jerison, in J Reine Angew Math 635:121, 2009 ). Nevertheless we succeed in proving that they are locally Lipschitz, which is the optimal regularity for minimizers.</description><subject>Analysis</subject><subject>Calculus of variations</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Formulas (mathematics)</subject><subject>Free boundaries</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Regularity</subject><subject>Systems Theory</subject><subject>Texts</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAeyyZGOY8SNxlqgCilQJCcHacmKnuMqj2IlQ-_W4CmtWs5h7R2cOIbcI9whQPEQAyXIKKCgUJaPHM7JAwRkFxeU5WUApBGV5Xl6Sqxh3ACgVEwvC3t12ak3w4yEbmsy03RDHrPO97_zRhZj9-PEra4JzWTVMvTXhcE0uGtNGd_M3l-Tz-eljtaabt5fX1eOG1rzEkVaGcwusKJgUyiYUlVtkUGEprVAJBS2oPK2kVYbVDqxKjJVE5iphgfMluZvv7sPwPbk46s7H2rWt6d0wRY0lCIYFZ5iiOEfrMMQYXKP3wXeJVSPokx89-9HJjz750cfUYXMnpmy_dUHvhin06aN_Sr8SE2cu</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>David, G.</creator><creator>Toro, T.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150901</creationdate><title>Regularity of almost minimizers with free boundary</title><author>David, G. ; Toro, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-ba33d02772548d43286d120b195d482661d08648d5d8a2ce0d8944b512eb4d033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Calculus of variations</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Formulas (mathematics)</topic><topic>Free boundaries</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Regularity</topic><topic>Systems Theory</topic><topic>Texts</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>David, G.</creatorcontrib><creatorcontrib>Toro, T.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>David, G.</au><au>Toro, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularity of almost minimizers with free boundary</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>54</volume><issue>1</issue><spage>455</spage><epage>524</epage><pages>455-524</pages><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>In this paper we study the local regularity of almost minimizers of the functional J ( u ) = ∫ Ω | ∇ u ( x ) | 2 + q + 2 ( x ) χ { u &gt; 0 } ( x ) + q - 2 ( x ) χ { u &lt; 0 } ( x ) where q ± ∈ L ∞ ( Ω ) . Almost minimizers do not satisfy a PDE or a monotonicity formula like minimizers do (see Alt and Caffarelli, in J Reine Angew Math, 325:105–144, 1981 ; Alt et al., in Trans Am Math Soc 282:431–461, 1984 ; Caffarelli et al., in Global energy minimizers for free boundary problems and full regularity in three dimensions. In: Non-compact Problems at the Intersection of Geometry, Analysis, and Topology, vol. 8397. Contemporary Mathematics, vol. 350. American Mathematical Society, Providence, 2004 ; DeSilva and Jerison, in J Reine Angew Math 635:121, 2009 ). Nevertheless we succeed in proving that they are locally Lipschitz, which is the optimal regularity for minimizers.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-014-0792-z</doi><tpages>70</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2015-09, Vol.54 (1), p.455-524
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_miscellaneous_1904217321
source SpringerLink Journals - AutoHoldings
subjects Analysis
Calculus of variations
Calculus of Variations and Optimal Control
Optimization
Control
Formulas (mathematics)
Free boundaries
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Optimization
Partial differential equations
Regularity
Systems Theory
Texts
Theoretical
title Regularity of almost minimizers with free boundary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularity%20of%20almost%20minimizers%20with%20free%20boundary&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=David,%20G.&rft.date=2015-09-01&rft.volume=54&rft.issue=1&rft.spage=455&rft.epage=524&rft.pages=455-524&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-014-0792-z&rft_dat=%3Cproquest_cross%3E1904217321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904217321&rft_id=info:pmid/&rfr_iscdi=true